Earthquake Waveform Recognition
Olivia Grubert and Bridget Vuong
Department of Computer Science, Stanford University

Abstract

When people think of applying machine learning to earthquake data, most seek to solve
the long-elusive problem of predicting when and where an earthquake will happen and
what magnitude it will be. Since earthquakes exhibit patterns that occur over hundreds or
even thousands of years, however, there is just not enough data yet to achieve this goal.
Instead of trying to predict the next earthquake, this paper aims at a more practical goal:
to recognize earthquakes in real-time seismic signals, which could be useful in early
warning systems such as Stanford’s Quake Catcher Network (QCN). By applying
algorithms such as SVM to data collected by QCN sensors, we distinguish seismic signals
caused by an earthquake from signals caused by noise.

1 Introduction

Stanford’s Quake Catcher Network is a network of inexpensive sensors that are connected to laptops
and desktops in volunteer homes throughout the world. The purpose of the network is to detect and

locate earthquakes as early as possible and to determine when and how badly the surrounding areas
will be affected. Currently, the sensors are triggered to send data to QCN servers using a simple
threshold on the instantaneous signal to long-term average signal ratio. Earthquake signals, however,

have a distinct shape based on the arrivals of the Primary wave, Secondary wave, and Surface wave
that is not captured by a simple threshold. This metric is also susceptible to other “ground-shaking”
events, such as dropping the laptop, heavy footfall, or even setting down a cup of coffee on the table

near the sensor. Because of the existence of these false positives, the triggered signals have to be
manually verified to be an earthquake by a seismologist. The ability to confidently detect an

earthquake automatically would be useful to the Quake Catcher Network.

Figure 1 Map of QCN sensor locations (blue) and earthquake distributions from USGS (red). [2]

2 Data

All QCN sensors report acceleration measured in the x, y, and z directions. The data stored on QCN
servers come in two varieties: triggered and continuous. Triggered data is collected only when a

sensor detects a signal that exceeds a threshold, while continuous data is collected unconditionally
every ten minutes. We collected data from 44 days (see Appendix A) on which a verified earthquake
occurred. Earthquake data was collected from triggered data, and noise data was taken from
continuous data sets on those same days. We filtered our data to only accept examples with a sample
rate of 50 samples/second, then truncated each training example to have 9,000 points per x, y, and z
axis. We converted our data from Seismic Analysis Code to text file so that our samples could be
read by libsvm as a sparse matrix with each row corresponding to a training example and each
column corresponding to a feature. In all, we selected 7,524 total examples to feed into our learning
algorithms, with roughly 35% withheld for use as test data. Approximately 2.5% of the data
represented verified earthquake events, while the rest of the samples were continuous noise
measurements.

3 SVM Algorithm

We used a regularized SVM algorithm in order to train a model for earthquake waveform prediction.
The following optimization over data points () and labels y € {— 1, 1}for parameters w, b, §;
defines our model [4, 5]:

min ¢ 3llw|* + C Z_)l&
s.t. Yy (wT?) + b) > 1-¢
£&=> 0

1 =1, ., m

We also tuned several kernels in testing, defined as K (z;, z;) = (b(xi)Ttb(m.jTheir descriptions and
relevant parameters are given in the following sections.

3.1 Linear Kernel K(z;, z;) = aTx;

3.2 Polynomial Kernel K(z;, z;) = ('ymlrmj—i—r)d

fory > 0

3.3 RBF Kernel K(z;, ;) = ezl
fory > 0

3.4 Sigmoid Kernel K(z;, ;) = tanh('ym?mj +7)

See our Results section for the effect of using each of these kernels in our predictive models.

4 Methods

4.1 Raw Data

Our first method for learning to recognize earthquake waveforms was to simply run the raw data
collected from QCN sensors through the SVM algorithm with default parameters. Each feature
vector is a concatenation of 9,000 points on each of the 3 axes to give a full feature size of 27,000.

Figure 2 Plot of raw noise data. Figure 3 Plot of raw earthquake data.

Raw Noise Data Raw Quake Data

— T T T T T T T
& n4s 3]
g 04 S ot i |
< 035 < L
» h h 1 1 | h h | x -2 L L | L
1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 2000 3000 4000 5000 &OOO YOO GOOO 8000
- 01 = 1 T T T
@ T
[5]
3 o 3] Lu_
< < Id
> 01 1 1 1 1 1 1 1 L > -1 L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 @000 9000 1000 2000 3000 4000 S000 6000 7000 2000 9000
I g
(5] (5
(5] (=]
T <
N 87 L L L 1 1 L L L No-10 L L L L L L L
1000 2000 3000 4000 5000 6000 7000 @000 9000 1000 2000 3000 4000 5000 G000 7000 8000 9000
Time Time

4.2 Scaled Data

We realized that we were interested only in learning the shape of earthquake waveforms and did not
want SVM to be sensitive to the specific amplitudes of the waveforms, which could vary based on
distance from the earthquake epicenter or even slight differences in each of the sensors. We
separately normalize the data in each axis to the interval [-1, 1] by subtracting the mean of the points
for each axis and dividing by the maximum deviation from the mean.

[(z — p)

m ——————————————————
maz, (@ 1)

Scaling our data still results in a feature vector of size 27,000 with 9,000 scaled points for each of
the 3 axes. Again, we ran the scaled data through SVM with default parameters.

Figure 4 Plot of scaled noise data. Figure 5 Plot of scaled earthquake data
Scaled Noise Data Scaled Quake Data

= 1 = 1 T T T T
o . : :]
3o S
<< <<
5 h ! | A h | A = -1 L " . . . I L .

1000 2000 3000 4000 S000 5000 7000 8000 9000 1000 2000 3000 4000 5000 G000 7000 OO0 9000
=1 z ! T T T T T T T T
g g 4
z " <
-1 1 ! 1 I 1 | L -1 L L L L L L L L

1000 2000 3000 4000 5000 GOOO 7000 8000 9000 1000 2000 3000 4000 5000 6000 7000 G000 9000
5 Eg 1
8o g o
<< <<
N A | | A 1 h L ! N . . L 1 L L L

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 2000 3000 4000 5000 6000 7000 G000 9000

Time Time

4.3 Fourier Transformed Data

Since we are dealing with waves, we thought that our data could be better represented in the
frequency domain, rather than using the raw or scaled data. We separately transformed the data in
each axis from the time domain to the frequency domain using the one-dimensional Fourier
transform.

N-1 ok
Xk — Z z, - e—z27an

n=0

The Fourier transform takes in n real numbers and returns § + 1 complex numbers. The magnitude
of these complex numbers became our new features. The resulting feature vector has 4501 features
for each of the 3 axes for a total of 13503 features. The smaller feature set size turned out to be an
added bonus since the SVM did not take as long to run.

We applied the Fourier transform on both raw and scaled data. For Fourier-transformed and scaled
data, we additionally scaled the magnitude returned by the Fourier transform by dividing by the
maximum.

Figure 6 Plot of scaled, FFT noise data. Figure 7 Plot of scaled, FFT earthquake data.

Scaled FFT Quake Data

1

Scaled FFT Noise Data

B 3
8 0s 8 05t
< << o
> 0 » 0 I i
500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500
5 ! 5
5] 8 0
o 05
< <<
> 0 0 | ! h
500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500
?J' 1 6 1
3 o0s 3 os|
N N U,
N0 n 0 SRR e
500 10000 15000 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency Frequency

The results of our experiments are summarized in Figure 8 below. Running SVM with a linear kernel
on data that was both Fourier-transformed and scaled performed the best with a training accuracy of
99.979% and a test accuracy of 99.562%. Varying parameter C on our top-performing case did not
yield better results.

Figure 8 Accuracy of SVM with default parameters C = 1, v = 1/numfeatures, r = 0
using different kernels and on different datasets.

SVM Kernel Raw Data Scaled Data 1D Fourier 1D Fourier
Transformed Transformed
Data Data, Scaled
Linear Train = 99.645% Train = | Train = 84.361% Train = 99.979%
Test = 2.371% 100.000% Test = 82.707% Test = 99.562%
Test = 88.763%
3rd Degree Train = 95.045% Train = 96.383% Train = 96.948% Train = 96.383%
Polynomial Test = 5.327% Test = 99.015% Test = 79.241% Test = 99.015%
RBF Train = 97.449% Train = 96.383% Train Train = 96.383%
Test = 8.646% Test = 99.015% 100.000% Test = 99.015%
Test = 99.197%
Sigmoid Train = 93.961% Train = 96.383% Train = 96.383% Train = 96.383%
Test = 11.529% Test = 99.015% Test = 98.504% Test = 99.015%

5 Conclusions and Future Work

There are still many alternate methods that we could try, given more time. Instead of using a

one-dimensional Fourier transform separately on each of the axes, we could use a three-dimensional
Fourier transform on the x, y, and z components of the acceleration. Since earthquakes are primarily

composed of a Primary wave, a Secondary wave, and a Surface wave, we could also use
independent component analysis to separate the three wave sources recorded on the three axes of
acceleration and define features of the SVM based on the separated waves.

We are satisfied with the results of our experiments overall and hope that it can be used as a stepping
stone for developing more sophisticated earthquake detection methods that can be used by the
Quake Catcher Network. One such extension to this project would be to recognize an earthquake
waveform given real-time data using Hidden Markov Models.

6 Acknowledgements

We would like to thank Associate Professor Andrew Ng for teaching us all that we know about
machine learning. We would also like to thank Assistant Professor Jesse Lawrence at the Department
of Geophysics and Project Leader of the Quake Catcher Network for his guidance in getting this

project started, for providing us with access to QCN data, and for helping us understand the basics of
earthquakes as well as some of the technical challenges that face QCN. We also thank Andrew Maas
for answering our questions on the Machine Learning aspects of our project.

7 References

1. Chang, C.C. and Lin, CJ.. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1-27, 2011.

2. Cochran E., Lawrence J., Christensen C., Chung A. A novel strong-motion seismic network
for community participation in earthquake monitoring. IEEE Instrumentation and
Measurement, 12:6:8-15, 2009.

3. Frigo, M. and Johnson, S. The design and implementation of FFTW3. IEEE 93:2:216-231,
2005.

4. Hsu, C.-W., Chang, C.-C., and Lin, C.-J. A practical guide to support vector classification.
Tech. rep., Department of Computer Science, National Taiwan University.

5. Ng, A. Lecture Notes 3 - Support Vector Machines. November 2012.

6. The Quake-Catcher Network. Data retrieved November 2012 from QCN Database.

8 Appendix A

Dates from which data was collected

Oct31,2012 Sep 21,2012 May 27,2012 Jan 14,2012 Dec 29,2011 Jul21,2011
Oct 23,2012 Sep 07,2012 May 25,2012 Jan 07,2012 Dec 23,2011 Jun 21, 2011
Oct 09,2012 Aug 08,2012 May 20,2012 Jan 06,2012 Oct21,2011 Jun 17,2011
Oct 04,2012 Jul 10,2012 May 12,2012 Jan 04,2012 Oct 09,2011 Jun 15,2011
Oct 03,2012 Jul 06,2012 Mar 17,2012 Jan 02,2012 Sep 20,2011 Jun 14,2011
Sep 28,2012 Jun 29,2012 Mar 05,2012 Jan 01,2012 Sep 19,2011 Jun 13,2011
Sep 23,2012 Jun 11,2012 Jan 27,2012 Dec 31,2011 Sep 10,2011 Jun 05, 2011

