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Principal Component Analysis (PCA)-based pattern recognition is employed to predict the loca-
tions of dark matter halos within simulated galaxy distributions. Local maxima in the net tangential
force produced by galaxy positions and ellipticities forms a feature space upon which PCA is per-
formed to distinguish halo from non-halo maxima. Within a dimensionally reduced space large halo
types are successfully clustered into two types, facilitating smart subtraction from the tangential
force landscape in order to better resolve minor halos. The strengths and weaknesses of this novel
approach are examined.

INTRODUCTION

No community can claim greater big data challenges
than that of astronomers. For example, the Large Synop-
tic Survey Telescope (LSST) is scheduled to come online
in 2018 and will produce on the order of 60 petabytes of
data during its ten year run [1]. In response to this im-
pending deluge of information, astronomers are seeking
new approaches for analyzing their observational data.
The Kaggle.com competition Observing Dark Worlds
(http://www.kaggle.com/c/DarkWorlds) is an exam-
ple of this. The challenge is to locate the center of
one to three dark matter halos given the positions and
ellipticities of galaxies produced by a simulation based
on a model of general relativity. To illustrate this, in
Fig. 1 we show the galaxies of a typical sky (ignore
the intensity data for now). Galaxies are represented
as short lines with orientations representing their ellip-
ticities. A large dark matter cloud can alter the appar-
ent positions and ellipticities of galaxies, such that they
appear to circulate around the center of the dark mat-
ter. This effect, known as weak gravitational lensing, is
exploited by astronomers to locate dark matter. Histori-
cally, model fitting is used to predict halo center locations
[2]. Our approach is different. In this article we outline
an image processing technique, based on principal com-
ponent analysis, that could potentially complement stan-
dard physics-based techniques to improve the precision of
dark matter detection.

FEATURE SPACE

Our dataset consists of a simulated distributions of
300-800 galaxies spread over a square field referred to as
a sky. A training set is provided consisting of 300 skies,
each of which includes one to three dark matter halos.
Within a sky, each galaxy is fully described by position
coordinates x and y along with ellipticity[4] vector com-
ponents e1 and e2. We choose not to use these raw data
but rather analyze a derivative quantity etf called tan-
gential force which is known to be correlated with dark
matter and is defined as

etf = −(e1 cos(2φ) + e2 sin(2φ)), (1)

where φ is the angle formed between a galaxy and a field
point (x′,y′) given by

φ = arctan

(

y − y′

x− x′

)

. (2)

That is, a particular galaxy exerts a etf upon a field
point that depends only on φ. We construct feature vec-
tors using the net tangential force Etf (x

′, y′) =
∑

etf
obtained by summing the contributions exerted by all
galaxies upon a particular field point. Unlike the galaxy
distribution itself, Etf has the virtue of being continuous
and differentiable across a sky.
The true distribution of galaxy positions and elliptici-

ties is essentially random such that on average Etf = 0.
When a dark matter cloud is positioned between a group
of galaxies and a distant observer, the collective mass of
the cloud bends the light, elongating galaxy shapes and
correlating galaxy positions such that regions of large Etf

form. In Fig. 1 we show a typical sky simulation illus-
trating the relationship between the galaxy distribution
and Etf where dark regions indicate positive Etf and
light green regions indicate negative Etf . The darkest
region in the figure correlates with a circulating pattern
of galaxies and indicates the general vicinity of a large
dark matter halo. What is not obvious from inspecting
the figure is that a second, much smaller, halo is posi-
tioned roughly half way between the large halo and the
right edge of the sky. The dominance of a single large
halo and near invisibility of one or two minor halos is
characteristic of the competition’s dataset.

METHOD

The Observing Dark Worlds competition has attracted
a great deal attention. It is clear from online forums that
contestants are applying a number of techniques. While
many, including the authors, have had success in predict-
ing the locations of dominant halos, it is the virtually

http://www.kaggle.com/c/DarkWorlds
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FIG. 1. An example galaxy distribution from the Kaggle.com
Observing Dark Worlds competition. The intensity data rep-
resents net tangential force Etf with dark regions indicating
relatively large positive values that are consistent with the
presence of a dark matter halo.

imperceptible minor halos that present the greatest chal-
lenge. A viable approach to this problem would seem
to be to study the training data to learn the functional
form of the Etf resulting from a large halo. Indeed the
standard framework used for numerical analysis of grav-
itational lensing effects employs a variety of models to
which data is fit[2]. Alternatively, one could take a more
naive approach, without the aid of physics, and apply
fitting algorithms such as a weighted linear regression
or estimation maximization to fit the gross features of a
sky’s big halo.
Our initial efforts consisted of such fitting techniques.

In particular, an estimation maximization algorithm in
which the tangential force is modeled as having a Gaus-
sian profile produces reasonable predictions of large ha-
los, but proved ineffective at identifying their minor coun-
terparts. In addition, several weighting strategies were
applied to construct quantities derivative of the tan-
gential force (e.g. replacing Etf with

∑

etf/r
a, where

0 < a < 1) in an effort to achieve greater resolution of the
minor halos. But again, the results were disappointing.
Next, clustering techniques were employed, which yielded
somewhat better results. In particular, a divisive hier-
archical clustering approach, which breaks apart the Etf

landscape at local minima effectively reduces the original
problem of finding minor halos in the sky to evaluating
the likelihood that a particular cluster, with its respective
features of size, shape, etc., contains a halo. Ultimately,
none of these results were satisfactory. Resigned to the
fact that we faced a very difficult challenge, we decided
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FIG. 2. Left) Histogram of dark matter halos binned accord-
ing to distance to nearest local maximum in Etf . Right) His-
togram of local maxima in Etf binned according to distance
to nearest halo.

to take a radically different approach and treat the prob-
lem of halo prediction as that of image recognition. It is
the authors’ belief that an optimal solution to a problem
as challenging as the detection of secondary halos will ul-
timately consist of many techniques working in tandem.
In this spirit, we focus our report on the use of principal
component analysis (PCA) to develop a pattern recogni-
tion algorithm for detecting dark matter halos.

Using PCA

In developing an image processing technique, window-
ing of the data is helpful in order to isolate relevant fea-
tures in the data. One approach to the present problem
could be a sliding-window in which the algorithm scans
through training data recording features along with la-
bels indicating the presence or absence of a halo. The
problem with such an approach lies in the fact that halos
are so uncommon, and therefore, the amount of nega-
tive y(i) = 0 training data dwarfs that of the positive
y(i) data. A critical observation helps us here. In the
left panel of Fig. 2 we show a histogram of dark mat-
ter halos binned according to the distance to the nearest
local maximum in Etf . The data clearly show that the
preponderance of halos are located near such a maxi-
mum. An overly optimistic interpretation of this data
might suggest that halo detection is not so difficult after
all. The right panel of Fig. 2 reveals the sobering reality
that while nearly all halos are found near maxima, the
vast majority of local maxima are nowhere near a halo.
So, while peaks in Etf do not solve the problem of halo
detection, confining our algorithm to the analysis of re-
gions around maxima dramatically reduces the problem’s
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FIG. 3. The first ten principal component loadings within the
space formed via PCA performed on windowed. The red curve
corresponds to halos while the blue data corresponds to non-
halos. Error bars correspond to ± one standard deviation.
The data clearly shows separation of halo from non-halos in
the 1D projection onto first principal component. The inset
shows the first principal component.

phase space.
To train the algorithm, a square region (with side 10%

that of the full sky) surrounding each local maxima in
Etf forms our feature vector x(i). PCA is performed on
80% of all skies resulting in m ≈ 10, 000 training vectors
among which about 300 are halos (i.e. y(i) = 1). 20%
of the skies are excluded to allow for testing of the algo-
rithm. Once in the basis formed by PCA only the first
ten principal components are used such that our data is
dimensionally reduced. When testing a sky the region
within a window centered at each local maxima in Etf is
projected into this ten dimensional space. Using a naive
Bayes model, the principal component loadings reveal a
probability that a local maxima is a halo.
The utility of PCA is that it provides a basis in which

the variance of the data is maximized. Even using our
local maxima technique, the ratio of positive-to-negative
training data is 0.03. The basis formed through PCA
therefore provides a representation in which the variance
among local maxima is maximized. It is not clear a pri-

ori that halos would be distinguishable from non-halos in
such a basis. Fortunately, the distinction can be made.
In Fig. 3 shows the first ten principal component load-
ings for halos y(i) = 1 versus non-halos y(i) = 0. The
error bars correspond to ± one standard deviation. The
data makes clear that separation is achieved by more
than one sigma in the first principal component, which
is depicted in the inset of Fig. 3. Note that the first
principal component captures the radial symmetry that
characterized a large halo. Importantly, the degree of
separation achieved within this dimensionally reduced
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FIG. 4. The first ten principal components of big halos (y(i) =
1) in the PCA space formed from full skies centered about
local maxima in Etf . The data clearly identifies two types of
big halos, represented by the blue and red curves.

space is largely dependent on how well the data is vetted
prior to the PCA. That is, if a larger number of negative
results were included the principal components chosen
would correspond to those that maximize the variance
among negative results and less so between positive and
negative. Simply considering all local maxima in Etf

with values greater than zero, this approach effectively
predicts major halos.

Two Halo Types

To predict the position of minor halos the algorithm at-
tempts to subtract the effect of the major halo. This pro-
cess is complicated by several factors, not least of which
is the fact that the Etf resulting from big halos varies in
shape. Once again PCA helps us. To learn about big halo
types we process our training data in a separate manner
from that described above. For each local maximum in
Etf in each sky, we circularly shift the sky such that
the maximum is centered. PCA is then performed on a
collection of full skies; that is, a separate training set is
formed consisting of 10, 000 full sky feature vectors. As
was true in the case of the windowed algorithm described
above the big halos can be distinguished from non-halo
maxima, although not as well as before. But distinguish-
ing between halos and non-halos is not the goal here.
Rather, we find that big halos cluster quite convincingly
within this full-sky local maximum PCA space! This for-
tuitous discovery is represented by Fig. 4, which shows
the first ten principal component loadings for the mean of
the two halo types. Once again, the errors correspond to
± one standard deviation. Particular components 5 and
7 show good separation. K-means clustering was used to
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FIG. 5. The mean profiles of the two big halo types discovered
within the PCA space formed from full skies centered about
local maxima in Etf . Type I is sharp is characterized by a
tall sharp peak, while type II is shallow with minima of 50%
the magnitude of its peak.

separate the big halos within this dimensionally reduced
space. Note that larger cluster numbers did not yield con-
sistent results during K-mean clustering but rather were
very sensitive to initial conditions; thus, we can only con-
vincingly identify two clusters or types of big halo. In Fig.
5 the Etf profiles of the two halo types are shown. The
two types have very different min-max ratios indicating
that a subtraction of the wrong type would dramatically
distort a sky’s Etf landscape.

Subtraction

The discovery of two big halo types in this space allows
for a smarter subtraction. Having identified the location
of the big halo using the windowed PCA algorithm, we
then circularly shift the sky to center the halo and then
project the full sky into the ten dimensional PCA space
represented by Fig. 4. As in the windowed PCA al-
gorithm, we use a naive Bayes model of this space to
determine probabilities of the test halo being type I or
type II. We then subtract the average halo of the corre-
sponding type from the test sky. Fig. 6 demonstrates
this process. In the topmost panel is a contour plot of
the sky’s original Etf . The red, roughly circular contours
indicate the position and magnitude of the major halo.
Two minor halos also exist in this sky and are circled in
the figure. The middle panel show the average big halo
type identified with the sky. The Etf of the middle plot
is then subtracted from the original sky yielding the con-
tours shown in the bottom plot. The minor halos are
now more easily resolved with the same technique used
for identifying major halos.

FIG. 6. Full sky contour plots of Etf demonstrating the sub-
traction process. The upper panel shows the original Etf ; the
large red peak corresponds to a major halo. Two minor ha-
los that are difficult to resolve within the original landscape
are circled. The middle panel shows the average type I big
halo identified as most resembling the sky, represented with
the ten dimensional space created via PCA, which has been
aligned with the major halo of the sky. The bottom panel
shows the result of subtraction, after which the minor halos
are much better resolved.

RESULTS

Using PCA we successfully predict the locations of big
halos. The Observing Dark Worlds competition includes
several benchmarks to which our algorithm compares
favorably. In particular, two benchmarks in the form
of algorithms referred to as Gridded Signal benchmark

and Maximum likelihood benchmark average distance er-
rors of 1646 units and 632 units, respectively, when pre-
dicting major halo locations on the first 100 training
skies. Our PCA-based algorithm, meanwhile, achieves
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292 units. While our algorithm performs much better
than the provided benchmarks, it should be noted that
these algorithms are clearly quite poor and that other
techniques are known to outperform the PCA algorithm
in its present form. Nonetheless, we feel our technique
has value in that it is a novel approach to the problem
and offers avenues toward composite techniques.
Reliable prediction of minor halos remains elusive. The

subtraction method described here works on some skies,
but far from all. It is likely that the present approach
is well suited for only a subset of dark matter halo con-
figurations. As a consequence, using PCA may be best
employed as part of a suite of techniques when perform-
ing halo detection.
Moreover, this PCA approach is far from optimized.

Forming predictions on particular principal components
rather than simply the first ten significantly improves
performance for certain skies. Similarly, feature selection
could be further optimized by modulating the window
size and/or shape during halo detection; as well as using
different window size/shapes when searching for minor
versus major halos. Other key parameters such as bin size
and the distance tolerance for determining label during
training could be optimized. Finally, a key defect in our
present algorithm is the use of circular shifts which result
in significant artifacts when subtracting halos near a sky
edge. Finally, the authors also speculate that performing
PCA exclusively on big halos—that is, omitting non-halo
Etf local maxima—one might successfully cluster major
halos into more than the two classifications identified in
the present work.

CONCLUSION

By employing PCA and other machine learning algo-
rithms, we can successfully predict the positions of major
halos. By confining the feature space to local maxima
in tangential force we dramatically reduce the problem’s
phase space and significantly improve the effectiveness of
PCA at distinguishing halos from non-halos. Using a sep-
arate PCA technique, in which clustering technique are
employed on a dimensionally reduced space, two distinct
halo types are identified facilitating the categorization of
test skies. By identifying major halo type, smarter sub-
tractions are achieved providing greater resolution of the
effect of minor halos on the tangential force landscape.
By applying image pattern recognition techniques to a
new problem space, a novel approach is developed and
explored.
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