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Introduction 
Product recommendation systems have been used to improve various user services. Both consumers 
and vender can benefit greatly from such system. Our project focuses on improving users’ music listening 
experience and presents a method for automatic music ratings prediction. For the purpose of this paper, 
data was publicly gathered available music data base from Yahoo!Music. Yahoo!Music is one of the most 
popular music website on the internet, providing extensive information about music and allowing users to 
rate many music item. This rating predictor could be valuable to the music-listeners by predicting a rating 
for a music track that has not yet rated by the potential listeners and can be used to recommend a music 
piece according to each person’s music preferences. We had four different approaches to implement the 
predictor, and some of them incorporate several algorithms. Given a music track ID, user ID, the predictor 
would automatically produce a rating. Based on the rating, the predictor then recommends the music 
piece if the rating prediction is above 70. K-NN (K-Nearest Neighbors) algorithm had best RMSE(Root 
Mean Square Error), 31.3980, while the combined of K-Means, Linear Regression, and Softmax 
Regression had the best correct recommendation rate, 66.84%. (When the predicted rating and its actual 
rating are both above/below 70, it results a correct recommendation.) 
 
Data Selection 
A data set containing text-based music rating information from Yahoo! Music was obtained from 
http://webscope.sandbox.yahoo.com/catalog.php?datatype=c. This dataset contains ratings from 
1,000,990 users to 624,961 items including four different categories: tracks, artists, albums, and genres. 
The total number of ratings is 262,810,175. This dataset is directly released by Yahoo! Music. All the 
users and items are meaningless anonymous non-repeatable numbers so that no identifying information 
is revealed. The ratings are continuous numbers from 0 to 100. An item has at least 20 ratings and each 
user has at least 10 ratings in this dataset. 
 
Data Processing 
Considering this large scale of dataset and the limitation of time we have on this course project, we 
decided not to use the complete dataset for this project and to focus on learning how to predict with 
information of users and information of tracks only (excluding the artists, albums, and genres). We picked 
10,000 users and 10,000 tracks randomly from the original dataset, while we tried to keep the same 
requirement on the ratings of users and tracks to ensure the quality of training: a music item should have 
at least 20 ratings, and each user should have at least 10 ratings in this dataset. With this processing, we 
were able to obtain a dataset with realistic information and reasonable size for this project. In the dataset, 
each rating has four kinds of information associated with it: user id, track id, and date of ratings. All user 
id's and track id's are consecutive integers, both starting at zero.  
 
Preliminary Feature Selection and Model 
The preliminary features were selected to be the two features coming with the dataset: user id, and track 
id. The preliminary model was selected to be linear regression model due to the continuous prediction 
nature of this problem. The root-mean-square error (RMSE) of this model is 38.132. The predicted ratings 
were all among rating of 20 to 60, which generated a relatively high RMSE value. We then ran our 
algorithm on training data set and found the similar result. Therefore, we believed we had an under-fitted 
model in this case. The main problem of the preliminary is that the user id and track id are all 
meaningless numbers, so training the computer to learn to fit this is meaningless as well. For example, if 
user 15 rates 90 for track 70, it doesn’t mean and usually won’t be the case that user 16 will rate 95 for 
track 90. Thus it is necessary to modify the feature selection for better performance. 
 
Features Selection 
As the result described in the previous section, we made a dramatic change in our features selection 
process. The data set was further processed to expand our features. We believed the features below had 
higher correlations to the ratings. 
 



User Features Music track Features 

1. Number of ratings the user made 7. Number of ratings assigned to the track 

2. User’s rating mean 8. Track’s rating mean 
3. User’s rating variance 9. Track’s rating variance 
4. User’s rating standard deviation 10. Track’s rating standard deviation 
5. User’s number of zero ratings 11.  Track’s number of zero rating 
6. Ratio of zero rating to all ratings. 12. Ratio of zero rating to all ratings 

 

K-Means and Linear Regression 
The linear regression algorithm under-fitted the data set as described in the previous section. Given the 

characteristics of our data set, we then decided to incorporate K-Means algorithm into our linear 

regression model with expanded features. We first used K-Means to separate the data set into 5 clusters 

using features: 1, 2, 4, 6, 7, 8, 10, 12. For each cluster, we trained our linear regression model using all 

twelve features, but only the data set within the cluster. As a result, we had 5 linear regression models, 

one for each cluster. For each input, we then first decided which cluster it belonged to and used the 

corresponding linear function to predict the ratings. The resulting RMSD was 33.6047 and the correct 

recommendation rate was 63.98%. The result was better than the pure linear regression model. However, 

when we ran the algorithm on training 

data, we still obtained a similar result 

(RMSD was 32.17 and 

recommendation correct rate was 

64.43%), which indicated the model 

was still under-fitted. Therefore, in 

order to fix the problem, we then tried 

to separate the data set into 7 clusters 

using all twelve features. The result 

was slightly better (resulting RMSD on 

test data set was 33.5793 and the 

recommendation correct rate was 

64.17%). Figure 1 below shows the error 

distribution resulting from linear 

regression and K-means model. The 

red columns represent the model that 

used 8 features for K-means 

classification, while green columns 

represent the model that used 12 

features for K-means classification. 

The x-axis stands for prediction error 

ranges 

      |             

                 | 

and y-axis represents the percentage 

corresponding to each prediction 

error range respectively. We can see 

that the overall results of K-means 

classification with 12 features is slightly 

better that of 8 features.  

Figure 1. Error Distribution using Linear Regression and K-

means.                                                                          

Figure 2 Score Distribution using Linear Regression and K-means 



K-Means, Linear Regression and Naive Bayes 
Figure 2 above shows the overall score distribution of the test set. X axis represents data indices and Y 

axis represents the score value. Red dots in the graph indicate the actual rating in the test set, and blue 

dots indicates our predicted scores. Each pair of blue dot and red dot of the same index corresponds to 

one pair of predicted score and actual rating. The order of dots in the graph is the result of score sorting 

for easy indication. Note that the prediction score bears a linear distribution in all regions. Particularly, the 

predicted scores that should be zero are mostly far from zero. This is the main reason for the high RMSE. 

Therefore, we decided to incorporate Naive Bayes Algorithm to our existing algorithm. Naive Bayes was 

used to predict to see if the output rating should be zero or nonzero. The Algorithm was trained on the 

same training data with twelve features. If it predicts the output rating to be zero, then the output rating 

should be zero disregarding the output from K-means and Linear regression model. On the other hand, if 

it predicts the output rating to be non-zero, then it should use the resulting rating from K-means and linear 

regression model. With Naive Bayes, the RMSD was 38.92 and the recommendation correct rate was 

64.17%. The worse RMSD was caused by the miss predictions by Naive Bayes Algorithm. The correct 

prediction rate was only 72.13% and most of them were coming from correctly predicting non-zero cases. 

When it miss predicted (either assigned a non-zero rating to zero or zero rating to non-zero), the errors 

were usually large, therefore, resulting a larger RMSD. To improve the prediction rate, we attempted to 

implement SVM. However, due to large training set (8*10^6 by 12), the run time for SVM was too long. 

Theoretically, if the prediction rate 

could reach 100%, the RMSE 

would drop to 26.15.   

 

K-Means, Linear Regression 

and Softmax Regression 
Besides using Naive Bayes 

Algorithm, we also tried to 

incorporate K-means and Linear 

Regression with Softmax 

regression. 
3 classes: 
The data set was divided into 

three categories: greater than or 

equal to 70, greater than 0 and 

less than 70, and equal to 0. 

Softmax regression was first 

trained on the training set with 

twelve features and then 

assigned a class to each input. 

The output rating of K-means and 

Linear regression is constrained 

according to each input’s 

category. The resulting RMSD is 

38.5011, and recommendation 

correct rate is 66.84%. 
10 classes: 

The data set was divided into ten 

categories: >= 0 && <10,  >= 10 

&& < 20, >= 20 && <30 and 

Figure 3. Error Distribution using Linear Regression, K-means and Classification 

Constraints                   

Figure 4. Score Distribution using Linear Regression, K-means and 3 Class Softmax 

Constraint 



etc...Softmax regression was trained on the training set with twelve features and then assigned a class to 

each input. The output rating of K-means and Linear regression was constrained according to one of the 

ten classes. The resulting RMSD is 38.0962, and recommendation correct rate is 66.14%. 

Figure 3 shows the error distribution of all three constraint models. The yellow, purple and green columns 

represent the model that used Naive Bayes constraint, 3 classes Softmax constraint and 10 class 

Softmax constraint respectively. The x-axis stands for prediction error ranges and y-axis represents the 

percentage corresponding to each prediction error range. Note that although the 10 class Softmax 

constraint achieved the best RMSE among the three, the detailed error distribution shows that it may not 

be the best model we want to use, since the percentage for small errors (ranging from 0~9) is much lower 

than the other two. The 3 classes Softmax constraint achieved a better result in respect of the detailed 

error distribution shown in Figure 3. As a result, we believe the 3 classes Softmax constraint should be 

the best model so far. Also note that in Figure 4 the prediction for zero ratings are much better than that 

without constraint, and this was exactly what we were expecting. 

 

K-NN (K-Nearest Neighbors) 
Unsatisfying with the results, we 

continued to search for a better 

algorithm that could improve the 

performance. We implemented user-

based and track-based K-Nearest 

Neighbors in our work. During the 

training process, the algorithm will be 

trained to find the top 20 most similar 

users for each user and the top 20 most 

similar tracks for each track. The 

similarity here is defined as the 

correlation between the ratings: two 

users will be more similar to each other 

if they have rated more tracks in 

common and those ratings are less 

deviated; two tracks will be more similar 

to each other if they have been rated more 

by the same users and have received closer ratings. With the information, a new rating can be predicted 

by taking the mean of the ratings made by the similar users on the similar tracks. However, with this 

approach, there is a possibility that these particular tracks have not been rated by these users before. 

Should this happen, a rating of zero will be used as prediction for simplicity.  

K-NN gives relatively promising predictions. The performance of this algorithm relies on the static user 

preferences and track popularity. The algorithm will not give good predictions if the user develops a new 

taste. However, by updating the training set frequently, it is possible to adjust this algorithm dynamically. 

The implementation of this algorithm can be improved by using the time, date of the rating and the extent 

of similarity as weighting parameters when making the prediction. Due to the overall good performance of 

K-NN, it takes a long time to finish the training; moreover, the complexity of the algorithm increases 

dramatically with larger dataset. 

 

Overall Comparison

Figure 5. Prediction Difference Distribution of K-NN Model         



 
                               Figure 6. RMSE and Correct Prediction Rate Comparison 

 

Figure 6 shows the final results of all the models we have used. The blue bar is the RMSE, and red bar is 

Correct Prediction Rate. From left to right are the results of models that used linear regression only, linear 

regression + 8 feature K-Means, linear regression + 12 feature K-Means, linear regression + 12 feature K-

means + Naive Bayes classification constraints, linear regression + 12 feature K-Means + 3 class 

Softmax classification constraints, linear regression + 12 feature K-Means + 10 class Softmax 

classification constraints, and K-NN. To find out the best model, we need to balance the results of RMSE 

and correct prediction rate. From Figure 6 we found that linear regression + 12 feature K-Means + 3 class 

Softmax classification constraints and K-NN should be the two best candidates. The former has the best 

correct prediction rate with an acceptable RMSE, and the latter has the best RMSE with an acceptable 

correct prediction rate. While it’s hard to tell which is better in terms of their results, we note that the 

former model is much more efficient than K-NN, since K-NN takes much more time for computing than the 

former model. So the “linear regression + 12 feature K-Means + 3 class Softmax classification constraints” 

model should be the best model that we’ll pick for implementing actual application. 

 

Conclusion 

The combination of K-Means, Linear Regression, and Softmax Regress produced the best correct 

recommendation rate, 66.84%, and K-NN had the best RMSE, 31.39. However, there’s still room for 

improvements. If the classification can correctly predict the output to be a zero rating, RMSE can reach as 

low as 26.15 and the recommendation provided by the predictor can be appreciated by the users 74.13% 

of the time. However, we do believe the data set inherently possesses some degree of randomness, 

since not every user would seriously rate every music pieces. Therefore, it’s challenging to achieve higher 

correct prediction rate.  
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