
Text detection and recognition in natural images

Steven Bell
Stanford University
sebell@stanford.edu

Abstract

Natural scenes pose a major challenge to traditional
optical character recognition methods because they often
contain noise, occlusions, distortions, or relatively small
amounts of highly styled text. In this work, we build a
probabilistic system which unifies the tasks of text detection
and recognition with a language model. We use an efficient
multi-scale character detector to locate characters within
an image without performing segmentation. This is fol-
lowed by a graph-based search which groups the detections
into words and evaluates their relative probabilities, avoid-
ing binary decisions except where computationally neces-
sary.

1. Introduction
The modern world is filled with text, which humans use

effortlessly to identify objects, navigate, and make deci-
sions. Although the problem of reading text with a com-
puter has been largely solved within limited domains – such
as identifying license plate numbers, digitizing books and
documents, or reading handwritten mailing addresses – the
more general question of how to detect and read text in nat-
ural, unstructured images remains an open challenge.

The applications for such a system are numerous. For
example, buildings photographed in Google’s Street View
could be automatically tagged with their address if a com-
puter could detect and read the building numbers. Likewise,
robots could be made to more intelligently act in a world an-
notated for humans, and translation systems for blind per-
sons or foreign travelers would be improved.

Several factors make reading text in natural scenes par-
ticularly difficult. In unstructured scenes, such as a pho-
tograph of a storefront, clutter dominates the image. Text
regions are of varying size and orientation, scattered, and
possibly occluded. Letters may appear in multiple fonts and
some letters may be ambiguous based on their shape alone.

Many approaches to this problem treat the recognition
problem as two separate tasks, first locating text and draw-
ing a bounding box, and then binarizing and reading it

with traditional OCR methods. By forcing binary decisions
at several points, this approach forfeits information which
could be used to produce a more accurate result.

This project uses a probabilistic framework where im-
age regions are assigned probabilities of containing differ-
ent characters, and the result is read with the help of lan-
guage characteristics, specifically the co-appearance of let-
ters.

To limit the scope of the project, we considered only
horizontal strings of upright lowercase letters. We worked
primarily on synthetic images with automatically generated
ground truth, which reduced the time spent creating training
data.

2. Prior work
Optical character recognition for printed documents and

handwritten digits has a long history. Many methods have
been proposed and used successfully, but most of these as-
sume that the input image has been cleanly binarized and
that characters can be segmented easily, which is rarely the
case in unstructured images. Because of the complexity of
the input images, text recognition in natural scenes is more
closely related to object detection than it is to traditional
OCR.

A large body of past work has focused purely on the
challenge of locating text within scenes, spurred primarily
by the ICDAR text detection challenges of 2003 and 2011.
These works can be roughly categorized into connected-
component based methods, which segment the image and
attempt to pick out which blobs are characters, and patch-
based methods, which use convolutional filters, image patch
correlations, wavelets, or other features to label the proba-
bility that an image patch contains text [1, 2].

Another domain has focused on the task of reading scene
text given a bounding box, centered around the ICDAR ro-
bust reading challenge. Weinman et al. use a Bayesian
model to unify text segmentation and reading, and show
that reading accuracy can be improved by incorporating ad-
ditional context such as language characteristics and the vi-
sual similarity of letters [3].

More recently, several groups have created end-to-end

detection and recognition systems. These use a variety of
features for detecting and classifying characters, including
Gabor filters, and connected-component dimensions and
densities [4]. A support vector machine or linear discrim-
inant analysis is used to perform classification based on
the features. This work is an extension of these, where
higher-level information is used to aid text detection, not
just recognition.

3. Method

3.1. Character detection

The core of our algorithm is a multi-scale Histogram of
Oriented Gradients (HOG) detector. The HOG descriptor is
a patch-based algorithm which provides a dense estimate of
shape over an entire image, using histograms of quantized
gradient orientations for small image patches. It was origi-
nally introduced for pedestrian detection [5], but has since
been applied to a wide variety of recognition tasks, includ-
ing character classification [1].

Because it works on a images patches rather than on
pre-segmented components, the descriptor is robust against
characters which are accidentally split apart or joined to-
gether, which are difficult for a connected-component rec-
ognizer to handle. By using gradients rather than raw pixel
values and by normalizing the resulting histogram, HOG
is invariant to illumination and brightness changes. HOG
inherently encodes position information, but also allows a
degree of variance by virtue of its coarse spatial binning.

However, for HOG to work correctly, the sizes of the
letters must roughly match the dimensions of the training
examples, so the descriptor must be run at multiple scales.
Additionally, characters have an extreme range of aspect ra-
tios, which means that the detector must also run across a
range of widths.

To detect characters, we use logistic regression on blocks
of the HOG descriptor. Logistic regression was chosen
since it is efficient to evaluate and provides a direct estimate
of probability. We train and save a unique detector for each
character, then the HOG descriptor is computed on the input
image and each detector is run in a sliding window fashion
across it. This produces a 2-D matrix of detection probabil-
ities for each character. Points with probabilities meeting a
threshold - generally far more than the number of charac-
ters actually present in the image - are carried forward to
the next stage.

3.2. Line detection

Given a set of detections, the next step is to find the most
likely lines of characters. We do this by taking weighted
votes across all character detections. The vote V can be

written

V (v) =

n∑
i=1

p(di)w(v − yi)

where v is the pixel height, xi and yi are the detection posi-
tion, p(d) is the probability of a detection d (i.e, the result of
logistic regression), and w is a window function weighted
toward the center of the detection. We currently use a Ham-
ming window, but a triangular or Gaussian window would
also be appropriate.

An example of a detection and the corresponding line is
shown in Figure 1.

0

20

40

60

80

100

120

140

160

180

200

Figure 1. Detection of lines in an image. The left image shows the
detections and the resulting line. The right shows the voting result.

3.3. Recognition and reading

Given a set of lines, we can determine the probability
that each detected character belongs to that line based on
its vertical position. Using a straightforward application of
Bayes’ rule we can write

p(lij |yi) =
p(yi|lj)p(lj)

p(yi)

where lij represents the probability that detection i belongs
to line j, and p(yi) is the probability of detection i appearing
at vertical position yi.

Assuming that p(yi), and p(lj) are constants (i.e, that
the positions of the characters and lines are uniformly dis-
tributed in the test images) the equation simplifies to

p(lij |yi) ∝ p(yi|lj)

The distribution on the right can easily be calculated us-
ing detected lines and ground truth bounding boxes for each
character.

To read words, we scan horizontally along each line and
build a directed graph of word possibilities. An empty root
node begins the graph, and letters are successively added as
the algorithm scans left to right.

Overlapping detections of the same letter are merged to-
gether, while overlapping detections of differing letters cre-
ate multiple paths in the graph. Each node is connected to
all of the possible letters immediately preceding it, that is,
the nodes in the graph closest to the leaves which do not
overlap. An example is shown in Figure 2.

2

spurn

spurn

s p u
r n

m
Figure 2. Completed word graph for a simulated example of the
word ‘spurn’. A false detection of the letter ‘m’ causes the graph
to have multiple paths.

With the graph completed, we can can assign edge
weights based on the probability of the letter combination
appearing in English text, and node weights using the prob-
ability of detection and the probability that the character
belongs to the line. By taking negative log-likelihoods of
the probabilities, finding the most likely word becomes a
minimum-cost graph traversal, which can be solved with
Djikstra’s algorithm or A*.

Using a complete dictionary of English words would al-
low more aggressive and accurate guessing of words. How-
ever, the corresponding disadvantage is that a large propor-
tion of words in natural images are non-dictionary words,
such as proper names.

4. Implementation
We implemented our own HOG descriptor in MATLAB,

which efficiently calculates the descriptor at multiple scales
by computing the gradients once, building a multidimen-
sional equivalent of an integral image, and then computing
the descriptor at each scale. While our code is theoretically
more efficient than recomputing the HOG descriptor from
scratch at each scale, we found that in practice our MATLAB
implementation runs significantly slower than the C imple-
mentation of HOG included in the open-source VLFeat li-
brary.

4.1. Detectors

The detectors are trained by computing the HOG de-
scriptor for all input images and using logistic regression
to obtain a linear classifier. Input images are scaled so that
the resulting descriptor is 8 × n × 31, where n varies with
the aspect ratio between 3 and 12. This gives feature vectors
with between one and three thousand elements.

We initially normalized all of the characters to a constant
width and height based on their character bounding boxes.
However, this vastly increases the range of scales which the
detectors must run at, since ’m’ and ’w’ are several times

wider than ’t’ or ’f’ in many fonts. Additionally, the char-
acters ’i’ and ’l’, are extremely distorted (stretched to fill
the whole width) and thus the training images bear little re-
semblance to the actual characters which must be detected.
Instead, we computed the median width for each character
using the training set bounding boxes, and then normalized
each character to a single height and the median aspect ratio.
This preserves the relative shape, but means that a separate
training set must be generated for each character.

We experimented with a variety of training set sizes and
relative ratios of positive and negative examples. Further
details of the training data are described in Section 5.1.

We used the liblinear package to perform logistic regres-
sion in MATLAB. Training on 15,000 images takes approx-
imately an hour on a 2 GHz Intel Core 2 Duo laptop with
3.2 GB of RAM. 1

To run the detector, we take the dot product between the
detector and a flattened block of the image HOG features in
a sliding window across the image. By keeping the detector
and the image HOG features as 3-dimensional matrices, this
becomes a series of cross-correlations between the corre-
sponding planes of the descriptors, which can be computed
efficiently as a 3-dimensional convolution in MATLAB.

4.2. Reading

Character position statistics were calculated by taking
the mean and variance of ground truth character centers.
The vertical position standard deviation is on the order of
2-4 pixels for a text height of 72 pixels, somewhat smaller
than we expected. Character coappearance statistics were
calculated using 18 popular documents from Project Guten-
berg, comprising approximately 12 million characters.

5. Testing
5.1. Synthetic dataset generation

Because obtaining a large dataset with ground truth is
difficult and time consuming, we relied on a synthetically
generated dataset, which labels ground truth for several
stages of the pipeline. This approach was used successfully
by Neumann et al. in [6] to train character classifiers for nat-
ural images using only computer-generated data. Despite
using synthetic data, building a good training set turned out
to be the most difficult and time-consuming challenge of the
project.

The input to our data generation program is a dictionary
of words and a list of fonts installed on the computer. For
each requested training sample, the program selects a word
and font at random, and generates a black-and-white image
containing the word. This image can easily be segmented to

1I attempted to run my code on the corn cluster, but the network/disk
latency from AFS made it far slower than running locally, since the training
includes reading tens of thousands of tiny images.

3

provide character bounding boxes and other ground truth. A
second color image is generated by selecting random colors
for the background and text. Noise is added, and the final
result is saved. Compression artifacts add a small amount
of additional noise.

For character detector training, it is important to include
a large number of examples with many small variations.
Since the HOG cells form a coarse grid and are run at a
discrete set of scales, it is important for the detector to find
matches which may have small scale and position differ-
ences.

To achieve this, we took each of 1000 input examples
and created 15 new images for training. Approximately
half of the images contain small position offsets and scal-
ing, while the other half contain large offsets or scales. The
former are kept as positive examples, while the latter are
marked as negative examples, along with images of all the
other letters. This helps prevent the detector from misfir-
ing on parts of letters which might otherwise be considered
matches.

Figure 3. Top: Sample input image. Middle: Positive training ex-
amples which exhibit small variations. Bottom: Negative training
examples which exhibit large variations.

We found that it was important to provide a small
padding space around each training example. If the outside
edge of a letter is cut off, the gradient along that edge no
longer contributes to the descriptor and the result is much
weaker. This is similar to the finding in [5] that space
around the pedestrian is important, and that increasing the
size of the pedestrian but removing the border space causes
a lower accuracy.

After training a set of detectors with this dataset, we cre-
ated an augmented dataset to reduce false positives. The
detectors were run on the original 1000 input images, and
training examples were pulled from all false positives.

5.2. Evaluation

To provide a quantitative metric on the accuracy of our
detector, we ran it on a separate test set of 100 images. The
precision-recall curves are shown in Figure 4, and confusion

matrices for the test set are shown in Figure 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

Original dataset

Augmented dataset

Figure 4. Precision-recall curves for the original and augmented
datasets. Most of the images contained multiple detections of at
least one character; these were combined into one for calculating
precision and recall.

Detected

T
ru

th

 a b c d e f g h i j k l mn o p q r s t u v w x y z

a
b
c
d
e
f
g
h
i
j

k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

Detected
T

ru
th

 a b c d e f g h i j k l mn o p q r s t u v w x y z

a
b
c
d
e
f
g
h
i
j

k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

Figure 5. Confusion matrices without (left) and with (right) aug-
mented training set, tested on a separate testing set of 100 images.

While this classifier performs fairly well on the test set
which contains single characters, it fares poorly on words
and sentences, often misfiring on combinations of letters
and spaces between letters. Additionally, it fails badly on
the letters ‘i’ and ‘l’, and has some difficulty with ‘f’ and
‘t’, because the training set for these letters contains many
negative examples which appear identical to positive exam-
ples. Figure 6 shows several negative examples for the letter
‘i’, which could easily be considered positive examples.

Figure 6. Negative training examples for the letter ‘i’ which are
very similar to positive examples. Because of these, the ‘i’ detector
does a very poor job.

In order to mitigate these problems, we created a new

4

training set based on images with complete words. As be-
fore, positive examples are taken from the character bound-
ing box with small perturbations. We used a larger bor-
der space to allow better differentiation between characters
such as ‘a’, ‘d’, and ‘q’, which can look identical if the
ascender or descender is ignored. Negative examples are
drawn from random patches of the image. We used an in-
put set of 2000 images with an average of 20 letters each,
which produced approximately 46,000 training images per
letter, split 40% positive/60% negative.

Subjectively, the resulting detector performs better on
the problematic letters above. However, it performed poorly
on the single-character test set, with precision less than 10%
across all recall values. Most of the false positives were on
flat patches of noise. Possible solutions for this might be to
include a higher percentage of flat examples in the training
set, or to replace HOG’s local normalization with a wide or
global normalization.

The detection algorithm is not accurate enough to pro-
vide reliable input to the graph construction and evaluation
algorithm, so we did not get to the point of testing it. Run-
ning the graph code on ground truth bounding boxes is not
particularly enlightening, since it consists of a single true
path.

Example results for some images in the ICDAR dataset
are shown in Figure 7. On real photographs, our detector
frequently reports hundreds of false positives, particularly
textured regions of the image such as brick. Using textured
backgrounds or image patches as training examples would
probably produce better results here than flat colors.

6. Future work
Some letters, particularly the lowercase letter ‘a’, can be

written in multiple ways. It would therefore be more appro-
priate to split the character into two classes with separate
detectors but the same label.

Due to the computational load, we did not have time
to experiment with as many parameter permutations as we
originally hoped. Further work should test larger descrip-
tors (10 or 12 blocks high) and a range of padding widths.

References
[1] K. Wang and S. Belongie, “Word spotting in the wild,”

in Computer Vision – ECCV 2010, ser. Lecture Notes
in Computer Science, K. Daniilidis, P. Maragos, and
N. Paragios, Eds. Springer Berlin / Heidelberg, 2010,
vol. 6311, pp. 591–604.

[2] A. Coates, B. Carpenter, C. Case, S. Satheesh,
B. Suresh, T. Wang, D. Wu, and A. Ng, “Text detection
and character recognition in scene images with unsu-
pervised feature learning,” in International Conference

Figure 7. Sample detection results from the ICDAR dataset. The
detector finds most of the characters, but includes many false pos-
itives. In the bottom image, only the strongest results are shown.

on Document Analysis and Recognition (ICDAR), Sep.
2011, pp. 440–445.

[3] J. Weinman and E. Learned-Miller, “Improving recog-
nition of novel input with similarity,” in IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, vol. 1, Jun. 2006, pp. 308–315.

[4] L. Neumann and J. Matas, “Real-time scene text local-
ization and recognition,” in Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on,
june 2012, pp. 3538–3545.

[5] N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005., vol. 1, Jun. 2005,
pp. 886 –893 vol. 1.

[6] L. Neumann and J. Matas, “A method for text local-
ization and recognition in real-world images,” in Com-
puter Vision ACCV 2010, ser. Lecture Notes in Com-
puter Science, R. Kimmel, R. Klette, and A. Sugimoto,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6494,
pp. 770–783.

A. Project sharing
This project was done in combination with CS 231A

(Computer Vision). I was the only student working on the
project in either class.

5

