
Stochastic Control of Electric Vehicle Charging
Kyle	 Anderson	

CS	 229	 Machine	 Learning	 Final	 Project	
	

Abstract— This project attempts several methods to optimize
charging schedules for electric vehicles on a constrained
radial network using machine learning. In the first
approach, electric vehicles act as independent agents in a Q-
Learning framework, receiving negative rewards based on
congestion charges calculated from their contribution to
overloaded parts of the network. In this model, electric
vehicles may take the action of increase or decrease the
charging rate by a fixed amount at each time interval, but are
subject to charging limits, battery capacity limits, and
charging deadlines. Next, I consider a central aggregator
who implements a supervised learning technique to recognize
the discounted future cost of a network state. During the
testing phase, the controller will greedily take actions that
move to a better state. Finally, I consider another central
aggregator scheme based on Linear Quadratic Regulation. I
propose an (experimental) alteration to the LQR method to
accommodate exponential action spaces by adding a
polynomial number of quasi-time steps to allow the decision
maker to perform many actions within a given time step.

I. INTRODUCTION
Electric vehicle charging is a unique electric load
because it is deferrable, controllable, and deadline
constrained. In other words, EV owners don’t care when
their vehicles are charged so long as they have enough
charge when they need to drive. This type of load
provides a unique opportunity to address three key issues
in grid operation:

Reshaping - reshaping the aggregate load curve by
charging during off-peak hours or even discharging
during peak hours using a Vehicle-To-Grid system.

Demand Response - Reducing the required reserve
capacity by providing ancillary service to the grid during
unexpected increases or decreases in the load

Distribution Automation Providing localized relief to
overloaded power lines or transformers on a constrained
distribution grid in the case of faults or unexpected
overloads

These benefits can only be obtained through the use of
intelligent charging schemes. In fact, widespread
uncontrolled electric vehicle charging could have
disastrous consequences in many regions of the United
States. Residential electricity usage tends to peak in the
evening when people get home from work, turn on the
TV, air conditioner, etc. (The same time that many
drivers would, in theory, plug in their electric vehicle).
Even deferred schemes such as charging at midnight or
simplified schemes such as randomization could quickly

degenerate as EV adoption increases. To put the
magnitude of this problem in perspective, high powered
electric vehicle chargers are rated as high as 50kW
[Eaton], an order of magnitude higher than the average
residential house load between 2kW and 4kW [JY].
Meanwhile, the distribution hardware in many areas of
the United States is already operating above its
nameplate ratings and approaching end of life
[Weidmann]. Therefore, electric vehicles must be
intelligent to avoid becoming the straw to break the
camel’s back.
	

II. NETWORK MODEL
I obtained a set of sample distribution networks from
Pacific Northwest National Labs Gridlab-D project
[PNNL]. As it turns out, distribution networks in the
United States are radial and often have a tree-like
structure. In order to focus on the machine learning
computational problem I decided to use my own Matlab
script to generate my own networks of similar structure,
allowing me to test my system on networks of various
sizes and branching factors without focusing on building
a robust parser.

	
Figure	 1.	 	 Sample	 Distribution	 Network

Figure 1 shows an example of one of my generated
networks. The customers are connected as leafs of the
tree, and the intermediate nodes are the constrained
network elements (transformers, power lines, etc), which
are subject to operational costs when they are
overloaded. We define the operational cost of a network
element as the percent by which it exceeds the average
operational point of that network, scaled by a constant.
Note that this cost is calculated on a per node basis using
the per-node average load.

Key
=	 Substation

=	 Transformer

=	 Customer

In order to determine the operating state of an electrical
network, one would typically solve the load flow
problem. This problem consists of setting the P and Q
values on load buses, P and |V| values on generation
buses, and solving the following system of equations
enforcing Kirchoff’s laws to recover the unknown
values.

This system of nonlinear equations can be solved using
Newton’s method[4].

Newton Update Rule:

Where:
	

	
	
My initial Q-Learning reward function used
MatPOWER[5], a Matlab-based solver to determine the
load on each node in the network, and the resulting
operational cost. This method turned out to be a
bottleneck as it limited the speed of my algorithms. I
resorted to an approximation where the load on any node
in the tree network is simply the recursive sum of all the
child loads. This approximation is mostly accurate for
tree networks.

III. CUSTOMER & EV MODELS
In addition to acquiring network models from PNNL, I
found some smart meter data from a PG&E Pilot
program [7] that provides a realistic estimate of the non-
EV base load for my models. Additionally, I was able to
acquire traffic data regarding driving patterns in the
United States from National Highway Traffic Safety
Administration [8]. The ultimate goal of this project
would be to prove the performance of my algorithms on

a unified model using these datasets. However, for now,
I generate the customer loads using Matlab in order to
focus on the ML problem at hand. This model provides
sample customer data including the arrival time,
departure time, amount of charge required, and battery
sizes for each electric vehicle on a given operational day.
These data generation scripts were inspired by the
datasets described above, but are easier to work with
because they are not missing data points. See Appendix
A for a detailed description of these models.

IV. OPTIMAL SOLUTION
The algorithms discussed in this paper assume we do not
know the future arrival times of EVs or the amount of
charge that will be required by an EV before it arrives.
Additionally, the algorithms do not assume any future
knowledge the customer’s base load. The algorithms do
assume that once an electric vehicle is plugged in, its
deadline and charge required are known. If we were
clairvoyant, we could generate an optimal policy that
minimizes the network operational costs while ensuring
hard deadlines for all electric vehicles by solving the
following linear program.

This solution provides a metric against which can
compare the performance of our algorithms, as well as
generate a “score” for network states to use as training
data for the supervised learning method discussed later.

V. MULTIAGENT Q-LEARNING
My first attempt was a multi agent Q-Learning model in
which each customer agent maintains its own discrete
state space and keeps track of the rewards it has seen.

Cost =α * max 0, (Load −µ load)
µ load

"

#
$

%

&
'

minα * P
t
∑ + β *Pi,t

'"# $%
i
∑

t
∑ + χ *Pi, j,t

'' "# $%
j
∑

i
∑

t
∑ + δ *Pi, j,k,t

''' "# $%
k
∑

j
∑

i
∑

t
∑

s.t.
 -RampLimitc ≤ Ratec,t − Ratec,t−1 ≤ RampLimitc ∀t, ∀customers
 SOCc,t = SOCc,t−1 + Ratec,t−1 ∀t, ∀customers
 Ratec,t = 0 ∀t when customers not home, ∀customers
 SOCc,t = SOCc,t−1 - ChargeRequired c ∀t when customers drives away, ∀customers

 Pt ≥ Loadi, j,k,l,t
l
∑

k
∑

j
∑

i
∑ −

1
T

Loadi, j,k,l,t
l
∑

k
∑

j
∑

i
∑

t
∑ ∀t

 P '
i,t ≥ Loadi, j,k,l,t

l
∑

k
∑

j
∑ −

1
T

Loadi, j,k,l,t
l
∑

k
∑

j
∑

t
∑ ∀t,∀i

 P ''
i, j,t ≥ Loadi, j,k,l,t

l
∑

k
∑ −

1
T

Loadi, j,k,l,t
l
∑

k
∑

t
∑ ∀t,∀i,∀j

 P '''
i, j,k,t ≥ Loadi, j,k,l,t

l
∑ −

1
T

Loadi, j,k,l,t
l
∑

t
∑ ∀t,∀i,∀j,∀k

 0 ≤ SOCc,t ≤ BatterySizec ∀t, ∀customers
 -RateMaxc ≤ Ratec,t ≤ RateMaxc ∀t, ∀customers

*Priority = ChargeRequired/Deadline, scaled by Battery Size

The agents do not keep track of the state of other agents,
and only have knowledge of the aggregate load on the
nodes that are on their path to the root. The state
transition probabilities are not deterministic from the
perspective of each agent because they depend on the
actions of other agents in the system as well as on the
future base loads in the system. For this reason, I have
modeled this decision using Q-Learning, where the agent
tries to learn the expected utility of an action value pair
without modeling state transitions.

The epoch for training an EV is a single day with 96 15-
minute time steps. On each training day, the customer
models generate new data for arrival time, departure
time, and charge required, but they maintain their same
statistics to generate this data from day to day. At the
end of each day, the Q values are updated according to:

Q(st,at) :=Q(st,at)+αt (st,at)*(Rt+1 +γmaxat+1

Q(st+1,at+1)−Q(st,at))

Since the system dynamics from the perspective of a
single EV are changing over time as other customers
refine their policy, we do not want the agent to stop
“exploring” possible states. Therefore, we
probabilistically select the next action using the
Boltzmann rule:

p(a | s) = eQ(s,a)/τ

eQ(s,a ')τ
a '∈A
∑

It is important to note here that if the optimal action was
not selected, the Q value will not back propagate to the
previous state. This problem is more difficult than a
traditional application of Q-learning because the state
action reward depends on the actions of other EVs that
are not visible from the perspective of a single EV.
Furthermore, in order to keep the state space small
enough to have a workable model, I was forced to do
course discretization.

In the initial process, all electric vehicles entered the
training phase with Q matrix set to zero. In this case, the
operating policies did not seem to converge at all. I

received better results when I “enabled” the EVs on the
network one at a time. This allowed each EV to find a
stable operating policy given the new network, and
future EVs to learn their policy on a stable network.
This method may, in fact, more accurately reflect how
such a system would be implemented in practice since it
is unlikely that all EV owners will purchase a new
vehicle at the same time. In the end, this method yielded
mediocre results (See “Results”).

VI. CENTRAL AGGREGATOR MODEL
In this central aggregator model, I assume there is a
central decision maker who has full network knowledge
at the current time step, but does not have knowledge of
future customer base loads or arrivals of new EVs. I
implemented a supervised learning method of training a
neural network to recognize “good” network states. I
generate random initial starting conditions for the
network, and use the linear program to solve for optimal
solutions. I use the LP solution to calculate the
discounted cost of operating the network over the
upcoming 8-hour period given the random initial state,
and assuming it follows the optimal policy solved by the
LP. 	

In order to reduce the dimentionality of a single NN, I
train a neural network for each node and for each time
period. Thus, there are a total of 96*(#nodes) distinct
neural networks. Training samples are 8-input vector
indicating the summed EV charging schedules for each
node in the network. For example, if the LP decided that
one customer would would charge at 3kW for the next 5
hours, and another customer would charge 2kW for the
next 3 hours, the training input for the parent node
(transformer) would be:
 Input: [5 5 5 3 3 0 0]

 Output: estimated discounted cost

If all charging operations were deferred for 1-hour, the
vector would be

 Input: [0 5 5 5 3 3 0]

 Output: estimated discounted cost

Note that the input vectors represent the EV load
associated with plugged in customers only, while the
estimated discounted cost would be a function of the
base load and new EV customers as well. Thus, the
neural network is implicitly predicting the base load and
arrival of new EVs.

Intuitively, having a different neural network for each
time period allows us to capture the effect that deferring
a load at a certain time of day may be more costly at a
particular node than at a different time of day.

During the test/operation phase, we greedily find the
customer action (increase rate, stay same, decrease rate),
which results in the best increase to the overall system

Rate ∈ −2,−1, 0,1,{ 2}
Priority*∈ −2,−1, 0,1,{ 2}
L1Load ∈ under,average,over,{ critical}
L2Load ∈ under,average,over,{ critical}
L3Load ∈ under,average,over,{ critical}
L4Load ∈ under,average,over,{ critical}
Time ∈ 5pm-5:30pm,5:30-6pm, 6pm-6:30pm,6:30-7pm,7pm-8pm,{ other}

R(s) = Rate * (L1Load −µ l1_ load)
µ l1_ load

+
(L2Load −µ l2 _ load)

µ l2 _ load

+
(L3Load −µ l3_ load)

µ l3_ load

+
(L4Load −µ l4 _ load)

µ l4 _ load

"

#
$

%

&
'

cost. (i.e. the weighted sum of the outputs from the NNs
for each node in the network). We continue selecting
actions that decrease the total system cost until there are
no more such actions, at which point we advance to the
next time step.
	

VII. LINEAR QUADRATIC REGULARIZATION
(EXPERIMENTAL)

I have attempted an implementation of Linear Quadratic
Regularization with an experimental modification to the
algorithm from class, but it is not yet working (I would
love some feedback here).

I am trying to apply LQR to this problem using the
“central aggregator” approach, where the states of each
customer and each node (transformer) are concatenated
to form a large state vector (~1500 dimensions). The
actions available at each time step are to increase the
charging rate, decrease the charging rate, or hold the
charging rate for each customer. This would yield 3^n
potential actions, which makes the algorithm from class
intractable. In order to decompose the action space, I
create intermediate time steps that do not correspond to
actual time steps within the system. Precisely, I add a
“quasi-timesteps” between each real time step for each
customer in the system, where the system operator has
the ability to take an action, but the system does not
otherwise change. This method gives the operator the
ability to select any combination of actions in between
actual system time steps. Precisely, the At matrices
corresponding to the real time steps will be calculated
from training data and reflect the probabilistic changes to
the system as time advances (such as new EVs arriving,
deadlines decreasing, and base loads changing).

On the other hand, the At matrices corresponding to the
intermediate steps will be the identity matrix, since the
only changes to the state vector on the quasi-time steps
will be a deterministic function of the selected action.

Furthermore, in both real time steps and quasi-time steps,
the Bt matrixes are known since the actions have a fully
specified effect on the state vector (the loads at specific
locations are increased/decreased).

With this modification as follows, we can follow the
dynamic programming procedure discussed in class.
Specifically, we recursively calculate the value function
for each state using

Vt
*(st) =maxat

Rt (st,at)+Est+1~Psa
[Vt+1

*(st+1)] 	

Now, the reward function, R, can be calculated
deterministically since the system operator knows the
full dynamics, and the Psa will be estimated from sample
data for the real time steps, and known exactly for the
“quasi-timesteps”.

I chose a random state vector at the end of the epoch as
the base case.

VT
*(sT) = −sT

TUTsT

I select an epoch of 3 days so we can clip out a 24-hour
period to find a “stationary” day, where the randomly
selected “base case” does not have significant impact.

	
Then, the action at each time step corresponds to

at = ((Bt
TΦt+1Bt −Vt)

−1BtΦt+1At)* st

VIII. RESULTS AND CONCLUSION
In this study, the simplest approach using supervised
learning worked best. I quantify these results by
showing the average overuse charge for each node for an
operational day. The penalty contribution of each node
is weighted by the number of customers beneath the
node.

Performance = 1
96

1
N

(#Customers)n *max 0,
(Loadn,t −µ n)

µ n

"

#
$

%

&
'

n∈N
∑

t=1

96

∑

When calculating the performance, I ran the model from
a random starting position for 48 hours, and used the last
24 hours as the performance data in an attempt to create
a “stationary” day, since random initial starting points
could be particularly bad. Under this method, the Linear
Program would, in general, perform perfectly. Note that
the LP used to generate our supervised learning training
data starts from random (i.e. “bad”) states, in which case
it may have significant discounted costs.

Figure	 2.	 	 Performance	

st+1 = Atst +Bat +wt

wt ~ N(0,Σt)

min
A

st+1 − (Ats+Btat)
2

t=1

T−1

∑
i=1

m

∑

0	

0.05	

0.1	

0.15	

0.2	

Q-‐Learning	 NN	 LP	 LQR	 	 (TBD)	

25	 percenIle	 Mean	 75	 percenIle	

	
The plot below (left) shows the average overuse in the
network over time for selected operation day using the
supervised learning approach. The plot below (right)
shows the total system load over time, which stays
within 10% margin throughout the day (scaled axis).

	
IX. APPENDIX A (CUSTOMER DATA GENERATION)

A. Initialization
I use a Matlab script to create a set of “realistic”
customers, Ci,j,k,l,, located beneath transformers i,j,k,l in
the network from Figure 1. During initialization, each
customer generates statistics that it will use to generate
its outputs during operation.

bounds_loadScaling1…96, 1..2 Traingular[0,4]

BatterySize Triangular[10,70]

Bounds_leaveForWork1..2 Triangular[20,44]

Bounds_arriveHome1..2 Triangular[48,92]

Bounds_chargeRequired1..2 Tri[-BattSize,BattSize]

	
B. Operation

During operation, the customer model will generate a
baseload for each 15-minute interval by scaling the
normalized standard residential load shape shown below
(96 intervals per day).

baseLoad1…96 loadScaling1…96 .* Tri[Ci,j,k,l.bounds_loadScaling…96]

The customer’s load at each interval, t, will be the sum of
the EV charging rate and the base load.

Load1…96 baseLoad1…96 .+ Rate1…96

The customer will increment the state of charge for his
battery at each time step

SOCt+1 SOCt + Ratet

During each day of operation, the customer will generate
a new leaveForWork, arriveHome, and chargeRequired
value based on the statistics it generated during
initialization.

leaveForWork Triangular[Bounds_leaveForWork1..2]

arriveHome Triangular[Bounds_arriveHome1..2]

chargeRequired Triangular[Bounds_chargeRequired1..2]

The model requires its state of charge to be greater than
chargeRequired at time leaveForWork.

SOCleaveForWork > chargeRequiredleaveForWork

At time leaveForWork, the stateOfCharge will be
reduced by chargeRequired. The model will force its
charging rate to increase if it is in danger of missing this
deadline.

SOCleaveForWork+1 SOCleaveForWork - chargeRequiredleaveForWork

The model also requires the rate to be zero between the
times leaveForWork and arriveHome.

RateleaveForWork…arriveHome == 0

	

X. ACKNOWLEDGEMENTS
I would like to thank Professor Abbas El Gamal and
Han-I Su for the contributions in helping formulate this
problem and discussing potential techniques.

REFERENCES
[1] http://www.smartgrid.com/wp-

content/uploads/2012/05/Eaton-DCQC.pdf
[2] http://nj.gov/emp/facts/
[3] http://www.weidmann-

solutions.cn/zhenduan/condition_based_strategies.pdf
[4] http://en.wikipedia.org/wiki/Power_flow_study
[5] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J.

Thomas, "MATPOWER Steady-State Operations,
Planning and Analysis Tools for Power Systems Research
and Education," Power Systems, IEEE Transactions on,
vol. 26, no. 1, pp. 12-19, Feb. 2011.

[6] http://en.wikipedia.org/wiki/Electric_power_transmission
[7] PG&E Smart Meter Pilot Program.
[8] http://www.nhtsa.gov/NCSA
[9] http://en.wikipedia.org/wiki/Q-learning

N
or

m
al

iz
ed

 L
oa

d

Standard Residential Load Shape

12AM 6AM 6PM 12PM

