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Abstract— This project attempts several methods to optimize 
charging schedules for electric vehicles on a constrained 
radial network using machine learning.  In the first 
approach, electric vehicles act as independent agents in a Q-
Learning framework, receiving negative rewards based on 
congestion charges calculated from their contribution to 
overloaded parts of the network.  In this model, electric 
vehicles may take the action of increase or decrease the 
charging rate by a fixed amount at each time interval, but are 
subject to charging limits, battery capacity limits, and 
charging deadlines.  Next, I consider a central aggregator 
who implements a supervised learning technique to recognize 
the discounted future cost of a network state.  During the 
testing phase, the controller will greedily take actions that 
move to a better state.  Finally, I consider another central 
aggregator scheme based on Linear Quadratic Regulation.  I 
propose an (experimental) alteration to the LQR method to 
accommodate exponential action spaces by adding a 
polynomial number of quasi-time steps to allow the decision 
maker to perform many actions within a given time step. 

I. INTRODUCTION 
Electric vehicle charging is a unique electric load 
because it is deferrable, controllable, and deadline 
constrained.  In other words, EV owners don’t care when 
their vehicles are charged so long as they have enough 
charge when they need to drive.  This type of load 
provides a unique opportunity to address three key issues 
in grid operation:   
 
Reshaping - reshaping the aggregate load curve by 
charging during off-peak hours or even discharging 
during peak hours using a Vehicle-To-Grid system.   
 
Demand Response - Reducing the required reserve 
capacity by providing ancillary service to the grid during 
unexpected increases or decreases in the load 
 
Distribution Automation Providing localized relief to 
overloaded power lines or transformers on a constrained 
distribution grid in the case of faults or unexpected 
overloads 
 
These benefits can only be obtained through the use of 
intelligent charging schemes.  In fact, widespread 
uncontrolled electric vehicle charging could have 
disastrous consequences in many regions of the United 
States.  Residential electricity usage tends to peak in the 
evening when people get home from work, turn on the 
TV, air conditioner, etc.  (The same time that many 
drivers would, in theory, plug in their electric vehicle).  
Even deferred schemes such as charging at midnight or 
simplified schemes such as randomization could quickly 

degenerate as EV adoption increases.  To put the 
magnitude of this problem in perspective, high powered 
electric vehicle chargers are rated as high as 50kW 
[Eaton], an order of magnitude higher than the average 
residential house load between 2kW and 4kW [JY].  
Meanwhile, the distribution hardware in many areas of 
the United States is already operating above its 
nameplate ratings and approaching end of life 
[Weidmann].  Therefore, electric vehicles must be 
intelligent to avoid becoming the straw to break the 
camel’s back. 
	
  

II. NETWORK MODEL 
I obtained a set of sample distribution networks from 
Pacific Northwest National Labs Gridlab-D project 
[PNNL]. As it turns out, distribution networks in the 
United States are radial and often have a tree-like 
structure. In order to focus on the machine learning 
computational problem I decided to use my own Matlab 
script to generate my own networks of similar structure, 
allowing me to test my system on networks of various 
sizes and branching factors without focusing on building 
a robust parser. 
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Figure 1 shows an example of one of my generated 
networks.  The customers are connected as leafs of the 
tree, and the intermediate nodes are the constrained 
network elements (transformers, power lines, etc), which 
are subject to operational costs when they are 
overloaded. We define the operational cost of a network 
element as the percent by which it exceeds the average 
operational point of that network, scaled by a constant.  
Note that this cost is calculated on a per node basis using 
the per-node average load. 
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In order to determine the operating state of an electrical 
network, one would typically solve the load flow 
problem. This problem consists of setting the P and Q 
values on load buses, P and |V| values on generation 
buses, and solving the following system of equations 
enforcing Kirchoff’s laws to recover the unknown 
values.   
 

 
 
This system of nonlinear equations can be solved using 
Newton’s method[4]. 
 
Newton Update Rule: 
 

        
 
Where:  
	
  

	
  
	
  
My initial Q-Learning reward function used 
MatPOWER[5], a Matlab-based solver to determine the 
load on each node in the network, and the resulting 
operational cost.  This method turned out to be a 
bottleneck as it limited the speed of my algorithms.  I 
resorted to an approximation where the load on any node 
in the tree network is simply the recursive sum of all the 
child loads.  This approximation is mostly accurate for 
tree networks.    
 

III. CUSTOMER & EV MODELS 
In addition to acquiring network models from PNNL, I 
found some smart meter data from a PG&E Pilot 
program [7] that provides a realistic estimate of the non-
EV base load for my models.  Additionally, I was able to 
acquire traffic data regarding driving patterns in the 
United States from National Highway Traffic Safety 
Administration [8].  The ultimate goal of this project 
would be to prove the performance of my algorithms on 

a unified model using these datasets.  However, for now, 
I generate the customer loads using Matlab in order to 
focus on the ML problem at hand.  This model provides 
sample customer data including the arrival time, 
departure time, amount of charge required, and battery 
sizes for each electric vehicle on a given operational day.  
These data generation scripts were inspired by the 
datasets described above, but are easier to work with 
because they are not missing data points.  See Appendix 
A for a detailed description of these models. 

IV. OPTIMAL SOLUTION 
The algorithms discussed in this paper assume we do not 
know the future arrival times of EVs or the amount of 
charge that will be required by an EV before it arrives.  
Additionally, the algorithms do not assume any future 
knowledge the customer’s base load.  The algorithms do 
assume that once an electric vehicle is plugged in, its 
deadline and charge required are known. If we were 
clairvoyant, we could generate an optimal policy that 
minimizes the network operational costs while ensuring 
hard deadlines for all electric vehicles by solving the 
following linear program.   

 

 
 

This solution provides a metric against which can 
compare the performance of our algorithms, as well as 
generate a “score” for network states to use as training 
data for the supervised learning method discussed later. 

 

V. MULTIAGENT Q-LEARNING 
My first attempt was a multi agent Q-Learning model in 
which each customer agent maintains its own discrete 
state space and keeps track of the rewards it has seen.   
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*Priority = ChargeRequired/Deadline, scaled by Battery Size 

 

 
 
The agents do not keep track of the state of other agents, 
and only have knowledge of the aggregate load on the 
nodes that are on their path to the root.  The state 
transition probabilities are not deterministic from the 
perspective of each agent because they depend on the 
actions of other agents in the system as well as on the 
future base loads in the system.  For this reason, I have 
modeled this decision using Q-Learning, where the agent 
tries to learn the expected utility of an action value pair 
without modeling state transitions. 
 
The epoch for training an EV is a single day with 96 15-
minute time steps.  On each training day, the customer 
models generate new data for arrival time, departure 
time, and charge required, but they maintain their same 
statistics to generate this data from day to day.   At the 
end of each day, the Q values are updated according to: 
 
Q(st,at ) :=Q(st,at )+αt (st,at )*(Rt+1 +γmaxat+1

Q(st+1,at+1)−Q(st,at ))

 
Since the system dynamics from the perspective of a 
single EV are changing over time as other customers 
refine their policy, we do not want the agent to stop 
“exploring” possible states.   Therefore, we 
probabilistically select the next action using the 
Boltzmann rule:  

p(a | s) = eQ(s,a)/τ

eQ(s,a ')τ
a '∈A
∑

 

It is important to note here that if the optimal action was 
not selected, the Q value will not back propagate to the 
previous state.  This problem is more difficult than a 
traditional application of Q-learning because the state 
action reward depends on the actions of other EVs that 
are not visible from the perspective of a single EV.  
Furthermore, in order to keep the state space small 
enough to have a workable model, I was forced to do 
course discretization.  
 
In the initial process, all electric vehicles entered the 
training phase with Q matrix set to zero.  In this case, the 
operating policies did not seem to converge at all.  I 

received better results when I “enabled” the EVs on the 
network one at a time.   This allowed each EV to find a 
stable operating policy given the new network, and 
future EVs to learn their policy on a stable network.  
This method may, in fact, more accurately reflect how 
such a system would be implemented in practice since it 
is unlikely that all EV owners will purchase a new 
vehicle at the same time.  In the end, this method yielded 
mediocre results (See “Results”). 
 

VI. CENTRAL AGGREGATOR MODEL 
In this central aggregator model, I assume there is a 
central decision maker who has full network knowledge 
at the current time step, but does not have knowledge of 
future customer base loads or arrivals of new EVs. I 
implemented a supervised learning method of training a 
neural network to recognize “good” network states.  I 
generate random initial starting conditions for the 
network, and use the linear program to solve for optimal 
solutions.  I use the LP solution to calculate the 
discounted cost of operating the network over the 
upcoming 8-hour period given the random initial state, 
and assuming it follows the optimal policy solved by the 
LP.  	
  

In order to reduce the dimentionality of a single NN, I 
train a neural network for each node and for each time 
period.  Thus, there are a total of 96*(#nodes) distinct 
neural networks. Training samples are 8-input vector 
indicating the summed EV charging schedules for each 
node in the network.  For example, if the LP decided that 
one customer would would charge at 3kW for the next 5 
hours, and another customer would charge 2kW for the 
next 3 hours, the training input for the parent node 
(transformer) would be: 
 Input: [5 5 5 3 3 0 0] 

               Output: estimated discounted cost 

If all charging operations were deferred for 1-hour, the 
vector would be  

 Input: [0 5 5 5 3 3 0] 

               Output: estimated discounted cost 

Note that the input vectors represent the EV load 
associated with plugged in customers only, while the 
estimated discounted cost would be a function of the 
base load and new EV customers as well.  Thus, the 
neural network is implicitly predicting the base load and 
arrival of new EVs. 

Intuitively, having a different neural network for each 
time period allows us to capture the effect that deferring 
a load at a certain time of day may be more costly at a 
particular node than at a different time of day.  

During the test/operation phase, we greedily find the 
customer action (increase rate, stay same, decrease rate), 
which results in the best increase to the overall system 

Rate ∈ −2,−1, 0,1,{ 2}
Priority*∈ −2,−1, 0,1,{ 2}
L1Load ∈ under,average,over,{ critical}
L2Load ∈ under,average,over,{ critical}
L3Load ∈ under,average,over,{ critical}
L4Load ∈ under,average,over,{ critical}
Time ∈ 5pm-5:30pm,5:30-6pm, 6pm-6:30pm,6:30-7pm,7pm-8pm,{ other}
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cost.  (i.e. the weighted sum of the outputs from the NNs 
for each node in the network).  We continue selecting 
actions that decrease the total system cost until there are 
no more such actions, at which point we advance to the 
next time step. 
	
  

VII. LINEAR QUADRATIC REGULARIZATION 
(EXPERIMENTAL) 

I have attempted an implementation of Linear Quadratic 
Regularization with an experimental modification to the 
algorithm from class, but it is not yet working (I would 
love some feedback here).  
 
I am trying to apply LQR to this problem using the 
“central aggregator” approach, where the states of each 
customer and each node (transformer) are concatenated 
to form a large state vector (~1500 dimensions).  The 
actions available at each time step are to increase the 
charging rate, decrease the charging rate, or hold the 
charging rate for each customer.  This would yield 3^n 
potential actions, which makes the algorithm from class 
intractable.  In order to decompose the action space, I 
create intermediate time steps that do not correspond to 
actual time steps within the system.  Precisely, I add a 
“quasi-timesteps” between each real time step for each 
customer in the system, where the system operator has 
the ability to take an action, but the system does not 
otherwise change. This method gives the operator the 
ability to select any combination of actions in between 
actual system time steps.  Precisely, the At matrices 
corresponding to the real time steps will be calculated 
from training data and reflect the probabilistic changes to 
the system as time advances (such as new EVs arriving, 
deadlines decreasing, and base loads changing).   

 
On the other hand, the At matrices corresponding to the 
intermediate steps will be the identity matrix, since the 
only changes to the state vector on the quasi-time steps 
will be a deterministic function of the selected action. 
 
Furthermore, in both real time steps and quasi-time steps, 
the Bt matrixes are known since the actions have a fully 
specified effect on the state vector (the loads at specific 
locations are increased/decreased).  
 
With this modification as follows, we can follow the 
dynamic programming procedure discussed in class. 
Specifically, we recursively calculate the value function 
for each state using 
 

Vt
*(st ) =maxat

Rt (st,at )+Est+1~Psa
[Vt+1

*(st+1)] 	
  

Now, the reward function, R, can be calculated 
deterministically since the system operator knows the 
full dynamics, and the Psa will be estimated from sample 
data for the real time steps, and known exactly for the 
“quasi-timesteps”. 
 
I chose a random state vector at the end of the epoch as 
the base case. 

VT
*(sT ) = −sT

TUTsT  
 
I select an epoch of 3 days so we can clip out a 24-hour 
period to find a “stationary” day, where the randomly 
selected “base case” does not have significant impact. 

	
  
Then, the action at each time step corresponds to 
 

at = ((Bt
TΦt+1Bt −Vt )

−1BtΦt+1At )* st  
 

VIII. RESULTS AND CONCLUSION 
In this study, the simplest approach using supervised 
learning worked best.  I quantify these results by 
showing the average overuse charge for each node for an 
operational day.  The penalty contribution of each node 
is weighted by the number of customers beneath the 
node.  
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When calculating the performance, I ran the model from 
a random starting position for 48 hours, and used the last 
24 hours as the performance data in an attempt to create 
a “stationary” day, since random initial starting points 
could be particularly bad.  Under this method, the Linear 
Program would, in general, perform perfectly.  Note that 
the LP used to generate our supervised learning training 
data starts from random (i.e. “bad”) states, in which case 
it may have significant discounted costs. 
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The plot below (left) shows the average overuse in the 
network over time for selected operation day using the 
supervised learning approach.  The plot below (right) 
shows the total system load over time, which stays 
within 10% margin throughout the day (scaled axis). 

	
  
IX. APPENDIX A (CUSTOMER DATA GENERATION) 

A. Initialization  
I use a Matlab script to create a set of “realistic” 
customers, Ci,j,k,l,, located beneath transformers i,j,k,l in 
the network from Figure 1.  During initialization, each 
customer generates statistics that it will use to generate 
its outputs during operation. 

 

bounds_loadScaling1…96, 1..2    Traingular[0,4] 

BatterySize   Triangular[10,70] 

Bounds_leaveForWork1..2   Triangular[20,44] 

Bounds_arriveHome1..2   Triangular[48,92] 

Bounds_chargeRequired1..2   Tri[-BattSize,BattSize] 

	
  
B. Operation 

During operation, the customer model will generate a 
baseload for each 15-minute interval by scaling the 
normalized standard residential load shape shown below 
(96 intervals per day). 

 
 
baseLoad1…96  loadScaling1…96 .* Tri[Ci,j,k,l.bounds_loadScaling…96 ] 

 
 

 
 

 

The customer’s load at each interval, t, will be the sum of 
the EV charging rate and the base load. 
 

Load1…96  baseLoad1…96 .+ Rate1…96 
 
The customer will increment the state of charge for his 
battery at each time step 
 

SOCt+1  SOCt + Ratet 

 
During each day of operation, the customer will generate 
a new leaveForWork, arriveHome, and chargeRequired  
value based on the statistics it generated during 
initialization. 
 

leaveForWork  Triangular[Bounds_leaveForWork1..2] 
 

arriveHome Triangular[Bounds_arriveHome1..2] 
 

chargeRequired Triangular[Bounds_chargeRequired1..2] 
 

The model requires its state of charge to be greater than 
chargeRequired at time leaveForWork.   
 

SOCleaveForWork > chargeRequiredleaveForWork 

 
At time leaveForWork, the stateOfCharge will be 
reduced by chargeRequired.  The model will force its 
charging rate to increase if it is in danger of missing this 
deadline.   
 

SOCleaveForWork+1  SOCleaveForWork - chargeRequiredleaveForWork 
 
The model also requires the rate to be zero between the 
times leaveForWork and arriveHome. 

 
RateleaveForWork…arriveHome == 0 
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