
1

When Machine Learning Meets AI and Game
Theory

Anurag Agrawal, Deepak Jaiswal

Abstract—We study the problem of development of intelligent
machine learning applications to exploit the problems of adap-
tation that arise in multi-agent systems, for expected-long-term-
profit maximization. We present two results. First, we propose
a learning algorithm for the Iterated Prisoners Dilemma (IPD)
problem. Using numerical analysis we show that it performs
strictly better than the tit-for-tat algorithm and many other
adaptive and non-adaptive strategies. Second, we study the same
problem from the aspect of zero-sum games. We discuss how AI
and Machine Learning techniques work closely to give our agent
a ’mind-reading’ capability.

Index Terms—Iterated Prisoner’s Dilemma, Evolution Theory,
Tit-For-Tat algorithm, Intelligent Agent (IA), Re-inforcement
Learning.

I. INTRODUCTION

The interaction of learning and evolution is a topic of
great interest in evolutionary computation[1],[2],[7],[8]. It plays
an important role in application areas such as multi-agent
systems, economics, politics, and biological modelling. Each
of these studies have one common thread: they involve the
study of systems of interacting autonomous individuals in
a population, whether the individuals are artificially created
intelligent agents, human beings or other biological organisms.
Some of the questions they study are: What will be the
equilibrium set of behaviours? Will there be any equilibrium?
How can cooperative behaviours evolve?

Approaches to answer these questions have been proposed
in last few decades[4],[5],[9],[10]. The purpose of this paper is
not to study the evolution of cooperative behaviours. Instead,
we take a specific example of a cooperation based game (The
Prisoner’s Dilemma) and propose an algorithm which does
strictly better than most of the traditional evolution-based
algorithms in terms of maximizing the long term expected
payoff. Further, we use these ideas to develop an intellegent
agent for a zero-sum game. We find that our algorithm gives
positive expected returns in the long run when run against both
simple and evolutionary strategies.

We report on a simulation study which explores what
happens when learning and evolution interact in an evolution-
ary game scenario. We explore interactions in a co-evolving

Anurag Agrawal (anurag07@stanford.edu) is with the Department of
Electrical Engineering, Stanford University, Stanford, CA. Deepak Jaiswal
(deepakjaiswal224@gmail.com) is with the Department of Civil Engineering,
Stanford University, Stanford, CA. This work was conducted as a part of
CS-229 Machine Learning course at Stanford University. A part of this
work will also be included in a paper to be submitted to IEEE Journal on
Selected Areas of Communication: Special Issue on Game Theory in Wireless
communications.

population of model-based adaptive agents and fixed non-
adaptive agents playing Iterated Prisoner’s Dilemma (IPD).
The simulation environment is similar to Axelrods well-known
IPD simulation study environment.

The rest of the paper is as follows. We first introduce
the Iterated Prisoner’s Dilemma problem and review previous
learning and evolution-based approaches to its study. Next, we
discuss our algorithm in detail. In the next section, we then
give a slightly different version of out algorithm when applied
to zero-sum games. Numerical Analysis of the results obtained
is provided in the penultimate section. The paper ends with
a conclusion section with some discussion of possible future
work in this direction.

II. THE ITERATED PRISONER’S DILEMMA PROBLEM

The basic version of Prisoner’s Dilemma can be presented
as follows: Suppose there are two prisoners A and B, arrested
for being involved jointly in a crime. The police does not have
any evidence to file the charges. The police decides to offer
the following deal to each of the prisoners separately: ”If you
agree that the other prisoner was involved in the crime, and
the other prisoner remains silent, you will be set free and the
other prisoner will receive a ten year sentence, and vice versa.
But if both of you remain silent, both will receive a five year
sentence.” The prisoners are not allowed to communicate with
each other. What should they do in order to minimize their
losses, assuming that A is not ’learned’ to B’s decision making
process? The answer is simple: Both should try to maximize
their expected profits (minimize expected losses). In the IPD
problem the same game is played K number of times, K > 1
is unknown to both the players. The outcome of the previous
game is known to both the players before starting a new game.
This gives an opportunity to learn from experience and make
better decisions in later games.

Certain conditions have to hold in defining a Prisoners
Dilemma game[8]. Firstly, the order of the payoffs is important.
The best a player can do is T (Temptation to Defect). The
worst a player can do is to get the Sucker payoff, S. If
the two players cooperate then the Reward for that Mutual
Cooperation, R, should be better than the Punishment for
Mutual Defection, P. Therefore, the following must hold. T
> R > P > S Secondly, players should not be allowed
to get out of the dilemma by taking it in turns to exploit
each other. That is, taking turns should not be as good an
outcome as mutual cooperation. Therefore, the reward for
mutual cooperation should be greater than the average of the
payoff for the temptation and the sucker: R > (S + T) / 2 To

2

be definite, we will choose the commonly used values T = 5,
R = 3, P = 1, and S = 0.

The question to be asked here is that: as a perfectly rational
player, playing another perfectly rational player, what should
you do in such a game? The Nash equilibrium solution to this
problem is to defect. We discuss this briefly below.

Suppose you think the other player will cooperate. If you
cooperate then you will receive a Reward of 3 for mutual
cooperation. If you defect then you will receive a payoff of 5
for the Temptation to defect payoff. Therefore, if you think the
other player will cooperate, you should defect, to give you a
payoff of 5. But what if you think the other player will defect?
If you cooperate, then you get the Sucker payoff of zero. If
you defect then you would both receive the Punishment for
mutual defection of 1 point. Therefore, if you think the other
player will defect, you should defect as well.

So, you should defect, no matter what option your op-
ponent chooses. Of course, the same logic holds for your
opponent. And, if you both defect you receive a payoff of
1 each, whereas, the better outcome would have been mutual
cooperation with a payoff of 3 each. This is the dilemma. In
other games, there may not be a dominant strategy, and other
notions of ”solving” the game are used. In Nash equilibrium
the two players adopt a pair of strategies such that neither
player can get a better payoff by deviating from their strategy.
In other words, each strategy is a best response to the other.
Depending on the game, there may be no Nash equilibrium,
a unique one, or many equilibria. Aside from these strategies,
there is another kind of strategy that can be considered, in
which players are allowed to use randomness (e.g. a roll of
a die) to decide their moves. In game theory these are called
mixed strategies or stochastic strategies, whereas those without
randomness are called pure strategies.

In contrast to the rational conclusion of mutual defection, in
real-life instances of Prisoner’s Dilemma, cooperation is often
observed. Why is it so? One suggested explanation is that in
real life, the players would have an expectation that they may
meet the same opponent in the future, and he might remember
a previous defection and take revenge by defecting on us next
time we play.

In the iterated game, player strategies are rules that de-
termine a player’s next move in any given game situation
(which can include the history of the game to that point). Each
player’s aim is to maximize his total payoff over the series.
If you know how many times you are to play, then one can
argue that the game can be reduced to a one-shot Prisoner’s
Dilemma[8]. The argument is based on the observation that
you, as a rational player will defect on the last iteration - that
is the sensible thing to do because you are in effect playing
a single iteration. The same logic applies to your opponent.
Knowing that your opponent will therefore defect on the last
iteration, it is sensible for you to defect on the second to last
one, as your action will not affect his next play. Your opponent
will make the same deduction. This logic can be applied all the
way back to the first iteration. Thus, both players inevitably
lock into a sequence of mutual defections.

One way to avoid this situation is to use a regime in which
the players do not know when the game will end. Nature

could toss a (possibly biased) coin to decide. Different Nash
equilibria are possible, where both players play the same
strategy. Some well-known examples are:

(1) Tit-for-tat: cooperate on the first move, and play the
opponents previous move after that;

(2) Grim: cooperate on the first move, and keep cooperating
unless the opponent defects, in which case, defect forever;

(3) Pavlov: cooperate on the first move, and on subsequent
moves, switch strategies if you were punished on the previous
move.

In our version of the problem we assume that K is large,
so that the opponents have enough opportunities to learn from
each other. Also, the payoff matrix is given by table-1:

(C,C) → (3, 3) (C,D) → (0, 5)
(D,C) → (5, 0) (D,D) → (1, 1)

where (C,C) → (3, 3) means that if both cooperate, both
get a payoff of 3, and so on.

In 1980, Robert Axelrod staged two round-robin ’tourna-
ments’ between computer programs designed by participants
to play IPD. Many sophisticated programs were submitted.
In each case, the winner was Anil Rapaports submission,
a program that simply played Tit-for-Tat. In 1987, Axelrod
carried out computer simulations using a genetic algorithm
(nowadays it would be called a co-evolutionary simulation)
to evolve populations of strategies playing the IPD against
each other. In these simulations, tit-for-tat-like strategies often
arose as the best but it was proved that they were not optimal.
In fact, Axelrod used this to illustrate that there is no ’best’
strategy for playing the IPD in such an evolving population,
because success depends on the mix of other strategies present
in the population. Axelrods simulations illustrate a different
approach to studying the IPD one in which the players are
not perfectly rational, and solutions evolve rather than being
deduced.

III. THE ALGORITHM

In any study of games involving a multi-agent system, the
players can be categorized under two broad sectors - adaptive
and non-adaptive agents. Consider a population of IPD Playing
agents. During their lives, these agents meet and interact with
each other where they may choose to cooperate or defect
and receive payoffs as given by table [1]. Higher reproductive
fitness is shown by those who get higher payoffs. The choices
they make are prescribed by genetically determined strategies.
This is the scenario Alexrod simulated in his experiment. In
to this population, we introduce our own set of players (by
mutation of a subset of existing set of players). These are the
agents who try to model the strategies of their fellow players
and use this model to maximize their own payoffs. Hence,
the population now has a set of intelligent, exploitative and
adaptive agents. This is the scenario simulated by us in our
experiments.

It is evident that their are two kinds of interactions possible:
adaptive v.s. adaptive, and adaptive v.s. non-adaptive. The
objective of each (adaptive) player who interacts with another
player is to first figure out whether the opponent is adaptive or
non-adaptive. Next, it should make an intelligent move so as

3

to maximize its long term profits and minimize the difference
in losses. In this study, we have chosen to restrict the strategies
under consideration to a class of finite memory stochastic
strategies (”behavioural strategies”) that can be described in
terms of fixed set of probabilities. This is general enough to
represent quite complicated strategies, but it does not include,
for example, some strategies defined by finite state automata.
However, most of the well-known strategies for IPD fit into
the framework.

We define the Probability function Pn such that Pn+1 =
fn(e1, e2,, en) gives an agent the probability of cooperation
in the (n + 1)th move given the outcomes e1, e2,, en of
the previous n moves of games played against a particular
opponent. Here, f(.) is the function that depends upon the
strategies in play. In a ’pure’ strategy, the value of each
function f(.) is either 0 or 1, otherwise the strategy is said
to be stochastic. A zero-order strategy is one in which fn is
a constant. For example, a completely random strategy is a
zero-order strategy for which fn(.) = 0.5 for all values of
n. A first order strategy is one in which fn is a function of
en only (and is independent of e1, ...en−1). For example, the
Tit-for-Tat strategy is a first order strategy in which Pn+1 = 1
if the opponent cooperated in the nth move, zero otherwise.
In other words,

Pn+1 = 1 if en = (C,C) or (D,C) (1)
Pn+1 = 0 if en = (C,D) or (D,D) (2)

where C denotes the outcome ’Cooperate’ and D denotes
the outcome ’Defect’. P1 is set to 1 by default when the
experiment starts.

We now introduce the three basic steps to the generalized
version of algorithm:

(1) Play a ’bad’ game (i.e. Always Defect) for the first
N moves against each new opponent. Similarly, for the next
N moves against each opponent, play a ’nice’ game. Isolate
the opponents who play with zero and first order strategies
using the outcomes of these 2N moves. Note that all the non-
adaptive agents will be isolated in this step. That is, strat-
gies like ’Tit-For-Tat’, ’Random’, ’Always-Defect’, ’Always-
Cooperate’ etc. can all be decoded in this step. Goto step 2.

(2) If the opponent is non-adaptive, play with the optimum
strategy (derived in the first step) for the next M moves, where
M >> N . Else, goto step 3. After M moves, loop back to
step 1.

(3) If the opponent is adaptive, use Reinforcement Learning
and adaptive-control techniques to predict its strategy and
maximize your profits, for the next M moves. After M moves,
loop back to step 1.

The values of M and N should satisfy M ≥ 200N . We
now define the parameters for our Markov Decision Model
which will be used in Step-3 of our algorithm. For each move,
there are 4 possible outcome states (C,C), (C,D), (D,C)
and (D,D) as depicted in table [1]. We denote this set by
S. The set of actions A consists of two elements: {C,D}.
R : S × A → R is the Reward function. The values taken
by the reward function are discussed in the previous section.
Psa are the state transition probabilities. Given a fixed policy

π : S → A, the value function V π gives the total expected
reward in following that strategy:

V π(s) = R(s) + γ
∑

Psπ(s)(s
′)V π(s′) (3)

where γ is the discount parameter and the the summation is
over the set of all states s′ belonging to S. Note that the
description of the Value function is not yet complete. Because
we do not know what our opponent’s current move is going
to be, we cannot complete determine the state s we want to
visit next. For instance, if we decide to cooperate, our next
state will be of the form (C,X) where X is random variable
taking values in {C,D}. Hence, we take the expected value of
the reward we expect to receive over the two possible states.
We define the optimal value function according to:

V ∗(s) = max
π

E[V π(s)] (4)

where expectation is taken over the two possible states. The
optimal policy π∗ : S → A is given by

π∗ = arg
π

max E[V π(s)] (5)

We solve the Bellman equations numerically to compare
the performance of our algorithm with other algorithms run
in similar experimental environment. Numerical analysis is
presented in the ’Numerical Results’ section.

IV. ZERO-SUM GAMES

We now discuss some similar situations that arise in zero-
sum games. A zero-sum game is a mathematical representation
of a situation in which the sum of profits (may be positive
or negative) of all the participants is equal to zero. In other
words, the profits are exactly balanced by the losses. The
Nash equilibrium solution for a two player zero-sum problem
can be easily obtained as a solution to a convex optimization
problem. We consider a problem of an iterated zero-sum game.
One of the greatest temptations of designers in the gaming
industry has been to create a false impression of ’learning’
and, until recently, machine learning hasn’t been used in
many games. In complex zero-sum games like Poker, decision
making is influenced not only by the scenario of the current
game, but also by a learning agent that is composed of a
few fundamental parts like: a learning element, a curiosity
element, a performance element and a performance analyzer.
The learning element is the one responsible for modifying
agent’s behavior on each iteration of the underlying algorithm.
Here we are assuming that the participants do not have any
information about their opponents’ playing styles before the
start of first game. The curiosity element is one that alters
the behavior predicted by the learning element to prevent the
agent from developing bad habits or biases. The performance
element is the one that decides the action based on output of
the curiosity element. The performance analyzer is the one
responsible for analyzing the outcome of the decision made
in the previous iteration and feeding it back to the learning el-
ement in the current iteration. Decision trees, neural networks
and belief propagation networks are all goods methods for
modeling ’learning’ and ’reasoning’. The most common pitfall
encountered in designing a Learning AI using this approach is

4

that the computer program is taught badly if the human player
is not familiar with the game and/or plays the game stupidly.
Our algorithm, as discussed above, considers a Reinforcement
Learning approach to model the learning element. For zero-
sum games, we add the curiosity element of our algorithm to
make sure that we do not get trapped in the above pitfall.

The problem is as follows: Two players are dealt one card
each. The cards have either 0 or 1 written on them with equal
probability. If you happen to receive a card which says ’1’,
it implies you have a strong hand, and if it says 0 it means
that your hand is weak. Same is the case with your opponent.
Now both of you are required to declare the strengths of your
hands, but both have an option of ’bluffing’. The objective is
to make the best guess of the opponent’s hand and also to try
that your opponent is not able to guess your hand correctly.
If your guess is right and your opponent’s guess is wrong,
you get a score of 20 whereas your opponent gets −20, and
vice versa. If both are correct or both are wrong, both get
a score of 0. Thus, in simple words, our objective is just to
maximize our own score. If the game is played exactly once,
the solution is to make a guess of opponent’s hand by flipping
a coin, and to bluff about your own hand hoping that your
opponent will believe you. We call this problem the ’Bluff-
Catcher’s’ problem.

Now, we deal with the iterated version of this problem.
Assuming that you will play this game with your opponent a
large number of times, is it possible to make more educated
guesses of your opponent’s hand to determine wether or
not the opponent is bluffing? The answer is Yes. We again
consider a similar experiment environment. The difference is
that now ’Defecting’ takes the role of ’Bluffing’ B and that
’Cooperating’ takes the role of ’Telling Truth’ (T). The steps
of the modified version of the algorithm are as follows:

(1) Play a ’bad’ game (i.e. always bluff) for the first N
moves against each new opponent. Similarly, for the next
N moves against each opponent, play a ’nice’ game. Isolate
the opponents who play with zero and first order strategies
using the outcomes of these 2N moves. Note that all the non-
adaptive agents will be isolated in this step. That is, strategies
like ’Tit-For-Tat’, ’Random’, ’Always-Bluff’, ’Always-Tell-
Truth’ etc. can all be decoded in this step. Goto step 2.

(2) If the opponent is non-adaptive, play with the optimum
strategy (derived in the first step) for the next M moves, where
M >> N . Else, goto step 3. After M moves, loop back to
step 1.

(3) If the opponent is adaptive, use Reinforcement Learning
and adaptive-control techniques to predict its strategy and
maximize your profits, for the next M moves. Before making
a move, turn to the curiosity element. With probability δ, the
curiosity element will inform you to switch to a sub-optimal
strategy. If that indeed happens, keep a separate record of the
reward you got after playing this move. Feed it back to the
curiosity element. The curiosity element will adjust the value
of δ by comparing the reward you got in this move to the
rewards in previous moves. After M moves, loop back to step
1.

The reinforcement learning model used is quite similar, and
hence is not discussed in detail again. Thestarting value of δ

Fig. 1. % of times algorithm performs close to optimum versus the number
of games played.

Fig. 4. Expected Score versus Number of games played. (IBC problem)

was chosen to be 0.01. The zero and first order strategies were
easily cracked, hence their plots are not included again. Some
interesting observations were obtained when we compared
the performance of our strategy to the Pavlov-type strategy.
We observed that the nth order Pavlov strategy performed
considerably well against our algorithm in the initial phase
of the simulatiion. The overall score it earned was high (and
sometimes even more than the learning algorthm) but the rate
of increase of it’s score always showed a decreasing trend.
Brief comparison between the two strategies are made in the
Numerical Analysis section.

V. NUMERICAL RESULTS

Bellman equations are very hard to solve analytically even
with small state space as is considered in the current problem.
We employed the method of undetermined equations to solve
a few special cases of the Bellman equations. But most of the
other (general) cases were solved numerically. We obtain some
useful insights related to the performance of our algorithm in
our simulation environment as compared to that of Tit-for-
Tat, Pavlov and a few special zero-order strategies. Fig. 1
shows the % of times different algorithms performs close
to optimum. Here ’optimum’ refers to the score that would
have been achieved if you would have predicted each move of
your opponent correctly and hence would have chosen the best
possible series of actions. Here ’close’ means that the score
obtained was at least 85% of the optimum score. We see a
clear distinction between the performances of our algorithm
and that of Tit-for-Tat when the number of moves is close to
8000. Each algorithm was run against all the other algorithms
and the average performace was plotted as a functon of number
of moves. We observe that the algorithms which do not learn
with time (for ex. the ’Always Cooperate’ algorithm) were
punished badly by our learning algorithm and hence showed

5

Fig. 2. % of moves for which maximum possible payoff is achieved
versus number of games played.

Fig. 3. Total Score achieved by an Algorithm versus Number of games played.

poor performances. Tit-for-Tat did well against some adaptive
algorithms (including our own algorithm) but did not exploit
the ’learning’ benifit against zero-order algorithms.

Fig. 2 shows the % of moves for which maximum possible
payoff was achieved. As expected, the ML agorithm showed a
monotonically increasing graph as a function of the number of
moves. It implies that our algorithm gives better predictions
as the number of moves increases and hence increases the
total success %. On the other hand, the Tit-for-Tat algorithm
gives a mediocre performance which is almost independent of
the number of moves. The performances of the Pavlov and
the zero-order strategies in this regard are also independent of
the number of moves. In fact, they tend to degrade with time
because the adaptive learning algorithm tends to screw them
up more often.

Fig. 3 shows the total average score achieved by our learning
algorithm and the Tit-for-Tat. Each of these algorithms were
run against the other four algorithms and the score obtained
were recorded as a function of moves. The average of these
four scores were plotted for both the algorithms. An interesting
observation is that when our algorithm is sufficiently ’learned’
(i.e. number of moves ≥ 1000) the rate at which the score
increases is itself an increasing function of the number of
moves. Of course, this is a local phenomenon because once
our algorithm is sufficiently ’learned’ it cannot show this trend
anymore. On the other hand, although Tit-for-Tat also shows
an increasing trend, the rate of increase of score tends to
decrease after about 3000 moves.

Fig. 4 compares the performances of the ML Algorithm
with the Pavlov-type learning algorithm for the Iterated Bluff-
catcher’s problem. Both of these algorithms were run against
the other four algorithms and the score obtained were recorded
as a function of moves. The average of these four scores
were plotted for both the algorithms. One can see that Pavlov
performes better than our learning algorithm initially. This
is because of the sub-optimal performance given by our
algorithm in the initial 2N moves. Both the curves show a
decreasing score-rate, however a considerable difference in the
scores can be noted when the number of moves ≥ 6000.

VI. CONCLUSION

A machine learning approach to the Iterated Prisoner’s
dilemma problem has been studied. When the agents involved
use finite memory stochastic strategies, it has been shown
that the learning algorithm performs strictly better than the

Tit-for-Tat algorithm. The same algorithm, when applied to
the Bluff-Catcher’s Problem (with minor variations including
an introduction of a curiosity element), performs well against
the nth order Pavlov-type adaptive strategy. It also completely
exploits an opponent running a first or second order stochastic
strategies. For future work, we expect to apply modifications
of our algorithm to many complex zero-sum games that we
encounter in daily life. One such example is Poker. We are
currently in middle stages of an developing AI agent for Poker.

VII. ACKNOWLEDGEMENTS

We thank Prof. Andrew Ng and CS-229 course staff at
Stanford University for their continuous support with the
project work and course material. We also thank Gowtham
Kumar of Electrical Engineering department for several brain-
storming discussions. Although we tried our best to remove
any error, we understand that since our paper has not been
reviewed by peers, it is likely that we overlooked some
logical/grammatical/diction errors.

REFERENCES

[1] G. Weiss, ”Distributed Artificial Intelligence Meets
Machine Learning”
[2] M.Singh and M. Huhns, ”Challenges for Machine
Learning in Cooperative Information Systems”
[3] Sklansky, David 2005, ”The Theory of Poker (Fourth ed.).
Las Vegas: Two plus two”
[4] Rabin, Steve, ”AI Programming Wisdom”, Charles River
Media, INC. 2002
[5] http://ai-depot.com/GameAI/Learning.html
[6] Axelrod, R. and D’Ambrosio, L., ”Annotated Bibliography
on the Evolution of Cooperation”
[7] Axelrod, R., ”The evolution of strategies in the iterated
prisoner’s dilemma”, in Genetic Algorithms and Simulated
Annealing (L. Davis, Ed.), Pitman, 1987
[8] Philip Hingston, Graham Kendall, ”Learning versus
Evolution in Iterated Prisoners Dilemma”
[9] Fudenberg, D. and Levine, D. The Theory of Learning in
Games. Cambridge, MA: MIT Press, 1998.
[10] Fogel, D.B. Evolving Behaviours in the Iterated Prisoners
Dilemma, Evolutionary Computation, Vol. 1:1, pp 77-97,
1993.
[11] Jehiel, P. and Samet, D. Learning to Play Games in
Extensive Form by Valuation, NAJ Economics, Peer Reviews
of Economics Publications, 3, 2001.

