
Promoting Student Success in Online Courses

Chuan Yu Foo cyfoo@stanford.edu
Yifan Mai maiyifan@stanford.edu
Bryan Hooi bhooi@stanford.edu
Frank Chen frankchn@stanford.edu

1. Introduction

Online education has become popular as an effective
method of imparting knowledge to a wide audience
efficiently and at low cost. Unlike traditional ”of-
fline” courses, online courses open up the possibility
of fine-grained tracking and monitoring of students’
activities, progress and performance. In turn, this
creates the possibility of of analyzing the factors in-
volved in student success, retention and progress.
An understanding of these factors could allow online
educators to better tailor their courses to promote
student success.

In this project, we will examine these factors in the
context of the Machine Learning and Databases on-
line courses (ml-class and db-class) that Stanford
University is offering in Fall 2011. Specifically, we
aim to examine the factors behind student success
and student retention in these two courses.

2. Methods

2.1. Tasks

For this project we looked at three different tasks
pertaining to our online education platform.

2.1.1. Student Success

We attemtped to predict students’ midterm exam-
ination scores based on the data collected for the
Databases course. This task was done using L1-
regularized linear regression.

2.1.2. Student Retention

We attempted to predict whether students will con-
tinue on (defined by submitting at least half of
the quizzes for that week) in the Machine Learn-
ing course in week 6 given their activities in weeks 1
- 5. This task was done using L1-regularized logistic
regression from the LIBLINEAR library. (2).

2.1.3. Automatic Tagging

We attempted to predict tags on forum topics with
related keywords, allowing users to more easily
search for infomration on a particular topic, simply
by selecting particular keywords.

Automatic tagging can be modelled as either a su-
pervised or an unsupervised learning problem. In
the supervised scenario, the algorithm learns in an
online setting, in which the algorithm suggests tags
whenever a forum post is made and receives feedback
when the user actually selects a tag. In the unsuper-
vised scenario, the algorithm attempts to automati-
cally cluster forum posts and tags each cluster with
a keyword that is representative of the cluster.

We have used both supervised and unsupervised
learning methodologies for our project.

2.2. Data collection

Over the course of 10 weeks, students taking the
online Machine Learning and Databases classes en-
gage in a number of learning and non-learning re-
lated activities on the respective course websites.
These include watching lecture videos, completing
review quizzes, exercises, and programming assign-
ments. Students may also ask questions and reply to
questions on a Question and Answer (Q&A) forum
on the website.

For the purposes of this project, we collected data
the following activities of individual students: the
times at which the student watches a lecture video,
attempts a quiz, exercises or programming assign-
ment; how frequently the student switches between
video speeds during lecture; pause and seek events
during lecture; attempts and scores on quizzes, ex-
ercises, and programming assignments; content of
forum postings on the integrated Q&A forum; how
many views the student’s questions received; how
many votes the student’s questions and replies re-
ceived; when the student registered and what track

(Basic or Advanced, only applicable for the Machine
Learning course) the student is on.

2.3. Preprocessing

Before passing the data into the learning algorithms,
the following preprocessing steps were taken.

2.3.1. Student Success and Retention

For the student success task, students who did not
submit the midterm were removed. Data on student
activities after the midterm began was also removed.
After this, 213 features and 9537 examples remained.

For the student retention task, students who were
deemed to dropped out before week 6 (i.e. had not
submitted the one quiz for week 5) were removed.
Data on students’ activities after the end of week 6
was also removed. After this, 196 features and 5751
examples remained.

Following this, the remaining examples for each of
the tasks were divided into train, cross-validation,
and test sets in the ratios 49% : 21% : 30%. The
training data was then normalized for each feature
by subtracting the feature mean, and dividing by the
feature standard deviation. Missing features (e.g.
where students did not attempt quizzes) were re-
placed by 0 or the mean for that feature as appro-
priate. The normalization values (means and stan-
dard deviations) were saved and re-used for testing
on the cross-validation set. After cross-validation,
the learning algorithm was retrained on the training
and cross-validation set and tested on the test set.

2.3.2. Automatic Tagging

For the automatic tagging task, we first preprocessed
the forum text using a standard stemming algo-
rithm, replaced common symbols with special to-
kens, and removed the most frequent words as well
as the words and tags that appear at most 5 times.
This left 2538 words, distributed among 2765 forum
topic titles and message bodies. The resulting input
to the algorithm is a document-word matrix con-
taining the frequencies of each word in each message
body, and a separate document-word matrix con-
taining the frequencies of each word in each topic
title. The output of the algorithm is the list of tags
it predicts for each document.

Train Test
Model ±0 ±1 ±0 ±1
Unweighted LR 17.6% 48.4% 17.6% 47.3%
LWLR 19.0% 51.3% 16.2% 47.0%
Neural network 17.7% 48.3% 16.0% 47.6%

Figure 1: Model accuracies for unweighted linear-
regression (Unweighted LR) and locally-weighted
linear regression (LWLR) (percentage of scores pre-
dicted to within indicated error) for the student suc-
cess task

3. Results

3.1. Student success

For the student success task, our goal was to pre-
dict students’ midterm scores based on the features
described above. The results for this task are sum-
marized in Figure 1. The learning curves can be seen
in Figure 2.

The first model we tried was L1-regularized lin-
ear regression. The regularization parameter λ =
1000 was chosen using cross-validation. The model
successfully predicted 16.6% of students’ midterm
scores exactly, and 47.3% of students’ midterm
scores to within ±1 (this includes the students’
whose scores were predicted exactly). The accura-
cies on the training set were similar, with 17.6% of
scores predicted exactly, and 48.36% predicted to
within ±1. This suggested that the algorithm was
suffering from high bias.

As it was not possible to obtain more features, we at-
tempted to address this issue by using a more power-
ful model – regularized locally-weighted linear
regression. The regularization parameter λ = 500
and the bandwidth parameter τ = 10 were chosen
using cross-validation. Performance on the test set
was still poor, with 16.2% of scores predicted exactly,
and 47.0% predicted to within ±1. Performance on
the training set was similar, with 19.0% of scores
predicted exactly, and 51.3% predicted to within ±1.
This suggested that the high bias problem was still
unresolved.

In another attempt to resolve the high bias problem,
we used a regularized neural network to model
the data. The neural network we used had 213 in-
put units, one for each feature; 50 hidden units, and
1 continuous-valued output unit for the predicted
score. The hidden layer used a sigmoid activation
function, while the output layer was linear. The
regularization parameter λ = 300 was chosen us-
ing cross-validation. Compared to unweighted lin-

2

(a) Unweighted linear regression (b) Neural network

Figure 2: Learning curves for two of the three models in the Student Success task. The graphs plot training
(blue line) and test (red line) accuracy (number of scores predicted to within ±1) against number of training
examples.

ear regression, the neural network did not perform
much better. On the test set, 16.0% of scores were
predicted exactly, and 47.6% predicted to within
±1. Training accuracy was similar, with 17.7% of
scores were predicted exactly, and 48.3% predicted
to within ±1. This suggested that the high bias
problem was still not resolved.

In the light of this, we conclude that the features
we have are not sufficiently predictive of students’
midterm grades. Interestingly enough, since our fea-
tures included assessment data, including the num-
ber of time students attempted each quiz and the
minimum, mean and maximum scores they obtained
for each quiz, this might suggest that the current as-
sessment methods are not sufficiently discriminative
of students’ understanding of the material (under
the assumption that the midterm is a ground truth
indicator of students’ understanding of the course
material).

3.2. Student retention

Model Train Test
Logistic regression 71.1% 68.8%
SVM with Gaussian kernel 81.7% 68.8%

Figure 3: Model accuracies for the student retention
task

For the student retention task, our goal was to pre-
dict whether students would continue in the course
or drop out of the course in week 6, based on fea-
tures collected regarding their activities in weeks 1 -
5. The results for this task are summarized in Fig-
ure 3. The learning curves can be seen in Figure 4
above.

The first model we tried was L1-regularized lo-

gistic regression. The regularization parameter,
λ = 1, was chosen using cross-validation. The model
was not successful, accomplishing an accuracy of
68.8% on the test set, which is at chance for the data
set (the entire data set, and the test set in particular,
both contain dropped out and continuing students in
the ratio 1 : 2, making chance performance about
66.6%). Accuracy on the training set was similarly
low at 71.1%, suggesting that the logistic regression
model might be suffering from high bias.

Since it was not possible to obtain additional fea-
tures for the dataset, we attempted to address
the high bias problem by using a more power-
ful model, the support vector machine (SVM)
with Gaussian kernels. However, performance
was still poor, with the SVM yielding an accuracy
of 68.8% on the test set and 81.7% on the training
set, suggesting that the high bias problem was still
not resolved.

In the light of this, we conclude that the features
we have are not sufficiently predictive of whether
students drop out of the course or not. This could
be explained by the fact that students may drop out
of the course for many external reasons such as loss
of interest, lack of time, other commitments, and so
on, reasons which are not captured by the features
in our dataset.

3.3. Automatic Tagging – Supervised

3.3.1. Modifications to Standard Naive
Bayes

For the tag prediction task, we use the Naive Bayes
algorithm with two significant modifications.

3

(a) Logistic regression (b) SVM with Gaussian Kernel

Figure 4: Learning curves for the two models in the Student Retention task. The graphs plot training (blue
line) and test (red line) accuracy against number of training examples.

Incorporating message titles and bodies: We
assumed titles and bodies are conditionally indepen-
dent given a class, then we can use the Naive Bayes
assumption to model probability of title text and
body text separately. As such, we pick the class

i

which maximizes the posterior probability of the
text, such that:

argmaxi (p(yi)p(T |yi)p(B|yi)) =

argmaxi

p(yi)∏
j

p(Tj |yi)
∏
j

p(Bj |yi)

where y0 is the untagged class, y1 is the tagged class,
and T and B are the title and body vectors for the
message we are currently processing: specifically, Tj ,
the jth entry of T , is 1 if the jth word appears in the
message title and 0 otherwise, and Bj , the jth entry
of B, is 1 if the jth word appears in the message
body and 0 otherwise. Justifying this formula re-
quires an extension to the Naive Bayes assumption:
we need to assume that the message titles and bodies
are conditionally independent given the class of the
message, which we feel is a reasonable assumption.

Modified Laplace Smoothing: In our version of
Laplace smoothing, we estimated φj|y=1, the con-
ditional probability of the jth word being present
given the class y = 1, as follows:

φj|y=1 =

∑m
i=1 1{x(i)j = 1 ∩ y(i) = 1}+ δ∑m

i=1 1{y(i) = 1}+ 2δ

and similarly for φj|y=0; here y(i) is the class of the

ith training example and x
(i)
j is 1 if the jth word ap-

pears in the ith training example, and 0 otherwise.

δ is a variable constant which would be 1 in regular
Laplace smoothing; in our case, we chose δ by cross-
validation to minimize test error. This modification
was performed because we observed that the sparse-
ness of the data meant that the ones added dur-
ing Laplace smoothing seemed to be overwhelming
(or at least adversely affecting) the sparse frequency
data that was actually collected, and thus we felt
that a smaller parameter δ might be more appropri-
ate. It turns out that this modification to Laplace
smoothing can in fact be justified as a linear interpo-
lation between a maximum likelihood estimator and
a uniform prior. (3)

3.3.2. Training Results

For each tag, the vast majority of the forum posts
belong in the ‘untagged’ category. As such, we mea-
sured the performance of our algorithm using preci-
sion and recall, combined into the F-measure score.

Model Train Test
NB 0.214 0.0212
NB+Titles 0.239 0.0332
NB+Titles+Smoothing 0.912 0.0734

Figure 5: F1 score for the tag prediction task

Naive Bayes: In our first attempt, we used Naive
Bayes with the usual Laplace smoothing and only
using the message bodies as input. As can be seen
from the table, the predictor’s training and test F-
measures were both quite poor. Due to the large
difference between training and test errors we hy-
pothesized that overfitting was occurring. As no
more data is readily available, however, we decided
to incorporate the topic titles into our predictor as

4

Figure 6: Learning Curves for the final tag pre-
diction algorithm. The graphs plot training (blue
line) and test (red line) F-measure against number
of training examples.

described in our methodology, hoping to give our
algorithm more information to work with.

Naive Bayes (with Titles): Therefore, for our
second attempt, we incorporated the topic titles us-
ing the modified prediction formula described in our
methodology. As can be seen from the table, this
led to a small improvement in both training and
test performance. Note, however, that this modifi-
cation does not directly tackle the overfitting prob-
lem: it does provide more data, but simultaneously
enlarges the space of possible models (since the pre-
diction model for each tag now includes separate
conditional probability vectors for the title and mes-
sage body). This is consistent with the observation
that the training F-measure also improved, whereas
normally adding more data would be expected not
to improve training performance.

Naive Bayes (with Titles and Modified
Smoothing): On our third attempt, we used the
variable smoothing constant δ = 0.00001 chosen us-
ing cross-validation. As a result, the algorithm did
significantly better in both training and test settings.
The large difference between training and test per-
formance that still remains (as can be seen from the
learning curve) indicates that the algorithm is still
significantly overfitting. Considering that even the
most frequent tags appear in only about 30 mes-
sages, this is not completely unexpected, as the al-
gorithm does not have enough data in a particular
tag’s ‘tagged’ class to build up accurate prior and
conditional probabilities for that class.

3.4. Automatic Tagging – Unsupervised

For the unsupervised automatic tagging task, we
used Latent Dirichlet allocation (LDA) model pro-
posed by Blei et. al. (2003). Specifically, we

used the LDA-c implementation by Blei to process
our data. The topics produced were able to dis-
tinguish between admin-related, theory-related, and
implementation-related content. We give some ex-
amples below.

Admin Topics week, date, slide, post, due,
schedul, note, materi, miss, got, solut, accuraci, sub-
miss, review, incorrect, check, accept, temp

Theory Topics valid, test, model, cross, curv,
real, high, sampl, select, overfit, layer, output, nn,
hidden, paramet, classifi, unit, digit, given

Implementation Topics plot, gnuplot, after,
call, window, close, paus, execut, matlab, win-
dow, command, instal, undefin, script, near, version,
linux, type

4. Conclusion

For student success and retention, quiz scores and
other features are not very predictive. Therefore, we
conclude that student retention and success is hard
to predict with the set of features we have. We have
identified the errors to be poor accuracy due to high
bias and we plan to acquire more features such as
student survey and time spent on quiz, etc... in the
future. In addition, we could collect more features
by initiating voluntary student surveys throughout
future courses in order to understanding any exter-
nal factors influencing their performance and success
rates throughout the class.

For text identification, we again found that the re-
sults were not as good as we had expected. We iden-
tified this as severely overfitting due to the large dif-
ference between training and test F-scores. We will
attempt to get more forum data over the next iter-
ation with more classes and try different algorithms
(such as regularized Naive Bayes) as we move on
with the project.

5. Acknowledgments

We would like to thank Professor Andrew Ng for
giving us the opportunity to work on the Online Ed-
ucation project. We would also like to thank Jiquan
Ngiam for his generous assistance.

References

[1] D. Blei, A. Y. Ng, M. I. Jordan. La-
tent Dirichlet Allocation. Journal of MA-

5

chine Learning Research 3 993-1022.
http://www.cs.princeton.edu/ blei/papers/BleiNgJordan2003.pdf

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A Library for Large
Linear Classification, Journal of Machine Learning
Research 9(2008), 1871-1874. Software available at
http://www.csie.ntu.edu.tw/ cjlin/liblinear

[3] M. D. Smucker and J. Allan. An Investigation of
Dirichlet Prior Smoothing’s Performance Advantage.
http://www.mansci.uwaterloo.ca/ msmucker/publications/Smucker-
Smoothing-IR319.pdf

6

