
A recommendation engine for Wikipedia articles based on

constrained training data

John Rothfels Brennan Saeta Emin Topalovic

Abstract

We consider the problem of generat-
ing recommendations for Wikipedia articles
based on constrained data. Modern recom-
mendation systems commonly use a combina-
tion of collaborative filtering techniques and
content-based methods to predict new items
of interest for a user. We focus our problem
on generating recommendations via content-
based analysis using only a small set of liked
articles as training data and no other infor-
mation about user preferences or other users
in the system. We find that our methods are
promising for users with many likes, but that
our algorithms do not generalize well to more
constrained data. Concretely, other methods
are needed to produce good results when a
user has a small set of likes.

1 Introduction

The popularity of Wikipedia has skyrocketed since its
inception. People use the site to learn, to research,
and to explore. Given its prevalent use, and the pre-
viously successful applications of machine learning to
recommendation problems, we propose to build a rec-
ommendation engine for Wikipedia articles. We for-
mulate our problem as follows: given a (non-empty)
set Li of Wikipedia articles that a user i has enjoyed
or liked, we wish to generate a non-intersecting set Ri

(Li ∩Ri = ∅) of Wikipedia articles the user will also
find interesting or enjoyable to read. Our challenge
is in generating measures of similarity between arti-
cles that generalizes to allowing our recommendation
engine to accurately suggest articles related to the
user’s preferences, as well as out-of-the-box articles
which (possibly unrelated to the user’s likes) he or
she may still enjoy. An additional challenge is work-
ing with the massive dataset that comprises the 17+
million articles of Wikipedia.

Unique to our problem is the nature of the data over

which we wish to generate recommendations. We
imagine a situation in which a user has potentially
liked only a small number of articles (|Li| ≥ 4 ∀ i),
based on what we believe to be a reasonable as-
sumption about how much a user can be expected to
manually curate their preferences. While some users
might actively curate their interests, others may not.
We wish to generate good recommendations in either
case, without resorting to collaborative filtering tech-
niques such as generating recommendations based on
what other (similar) users have liked.

2 Preliminary Steps

2.1 Generating a Dataset and Subset of
Wikipedia Articles

Our first task was to work towards generating a
dataset on which to test our recommendation algo-
rithms. We needed not only an unbiased dataset
which reflects the diverse preferences of multiple
Wikipedia users, but also a more tractable subset A
of Wikipedia articles on which to test our approach.
At the time we started our project, there were over
17 million articles on Wikipedia, comprising about 33
gigabytes of data. Given this large amount of data,
retrieving a similarity measure of each of these arti-
cles to users’ preferences would be computationally
infeasible (with our hardware setup).

Since we found no preexisting data for Wikipedia user
likes, to generate a dataset we asked real users (via a
web survey which we wrote and distributed) to select
Wikipedia articles that they would be interested in
reading. To make this survey more feasible for users
to complete, we again wanted a reasonable sized sub-
set of articles for them to choose from which would
allow for diversity of articles and topics but not in-
centivize users to rush through the survey, causing
them to submit disingenuous preferences.

For the reasons given above, |A| was set arbitrarily

1

at 863. However, we felt that choosing this subset
should not be done randomly, since many articles in
Wikipedia are stubs or pages redirecting to other ar-
ticles. We wanted to choose only articles with high
content value so that the selections would be rich and
more inclusive of users’ actual interests. Towards this
end, we implemented and ran the PageRank algo-
rithm [5]. We first processed our articles into a matrix
G such that Gi,j = 1 if article i links to article j. Af-
ter a little less than 180 hours, our implementation1

had converged such that the change in `1 norm was
less than 1 × 10−5. Given each article’s PageRank,
we selected the top m = 863 articles to be A.

We received 50 submissions to our web survey, each
containing at least 15 liked articles, with some sub-
missions including more than 100 selections. From
each user’s submission, we randomly chose 30% of
the selections to constitute a like set (Li) which we
use for generating recommendations; the other 70%
constitutes the articles we hope to recommend and
which all reported data is based on.

Note: in the recommendation domain, it is often in-
feasible to give more than a small number of rec-
ommendations (e.g. due to space limitations on a
web page) and in our situation, we are indeed con-
cerned with returning a reasonable number of rec-
ommendations. Moving forward, our decision was
to try and create algorithms which learn to return
good recommendation sets without artificial pruning
or post-processing steps, so recommendation sets are
reasonably sized by default.

3 Method and Experiments

3.1 Initial Strategy and Results

Given A, the next task was to convert each article
into a feature vector. We chose to start by consider-
ing the verbs, nouns, and adjectives appearing across
all articles in A as separate sets of features. As a
preprocessing step, we formed a dictionary of verbs,
nouns, and adjectives which appear in our corpus.
To standardize the dictionaries, we used Stanford’s
Part-of-Speech tagger [7] to select nouns, adjectives
and verbs; we used Porter’s stemming algorithm [8]
to reduce dictionary dimension.

For each article a ∈ A, we produced feature vectors of
the form Va = {v1, ..., vn} where each vi is either the
count in a of the ith dictionary word or I{vi ∈ a}, a

binary variable indicating existence of the ith dictio-
nary word in a. We produced separate feature vectors
for nouns, verbs, and adjectives.

On each vector type, we evaluated the capability of k-
means to produce meaningful clusters of articles. We
found that while a few clusters were in fact informa-
tive (see below), most were either very sparse or too
large to be useful no matter the number of clusters
generated. This motivated our exploration of better
feature choices.

Some examples of (qualitatively) interesting clus-
ters:

• Articles of Confederation, American Civil War,
Abraham Lincoln

• Ancient Egypt, Avicenna

3.2 Revised Strategy

We decided to build a new dictionary containing the
stems of all “useful” words in A. More concretely,
we ran Porter’s stemmer over all a ∈ A, and further
introduced a list of standard stop words to remove
uninformative English words from a such as “the”,
giving us a set of words a′. The dictionary generated
is the union of all a′. Finally, to reduce the dimension
of the dictionary, we removed words whose frequen-
cies across all articles fell out of a specified range
(arbitrarily set at 5-20), and were able to reduce the
number of words in the dictionary from 330, 000 to
under 20, 000. This choice was motivated by the in-
tuition that the most useful words to use for generat-
ing content similarity measures between articles are
those that are neither extremely rare nor extremely
common.

We further decided to switch from the naive approach
of generating feature vectors from count/existence of
nouns/adjectives/verbs and instead began consider-
ing methods that have proven to be successful in re-
lated works [6] [3]. We chose to do term frequency-
inverse document frequency (TFIDF) as a measure
of word importance within each article. This allowed
us to introduce a more intelligent notion of word im-
portance, rather than count. To introduce semantic
information, we considered latent semantic analysis
(LSA) which encodes the contextual usage of words
[2]. We further considered latent Dirichlet alloca-
tion (LDA) as a way to consider a different feature
paradigm, namely one which models a mixture of de-
duced topics as the representation for each article [1].

1Written in Python, leveraging the Numpy package.

2

Continuing on, we will differentiate between the dif-

ferent features choices as V
[tfidf |lsa|lda]
a .

We applied clustering to our feature vectors using k-
means. We utilized k-means in two ways which we
will refer to as naive and hierarchical. For Naive k-
means, we cluster VA into k ∈ {25, 50, 100, 500} clus-
ters, where VA is the set of feature vectors for A. For
a given user i, the recommendation set Ri returned is
the union of clusters containing articles from Li. This
method gives us an idea of how well our features allow
simple clustering to not only cluster potential articles
of interest, but further prune out irrelevant articles
to give a manageable recommendation set. Hierar-
chical clustering is a more direct way of producing
a targeted and manageable recommendation set. We
begin as we do with the naive approach, namely clus-
tering VA. For a given user i, we then iteratively
re-cluster the union of clusters containing articles in
Li until we achieve convergence; the recommendation
set Ri returned is the union of all re-clustered clus-
ters containing articles in Li. Convergence is reached
when subsequent runs stop adding a significant num-
ber of new articles to the recommendation set which
would be returned. Concretely, we define convergence
as:

Σn∈N
n

4
≤ 15

where N is the set of number of articles returned
in the four iterations previous to the current one.
Namely, ni is the number of articles added to the rec-
ommendation set going from iteration i− 1 to i. The
following is an outline of hierarchical k-means:

def h i e r a r c h i c a l k m e a n s (a r t i c l e s) :
r e c = s e t () # Ar t i c l e s to recommend
Add a l l a r t i c l e s t ha t are c l u s t e r e d
with e lements in the l i k e s e t
for a r t i c l e in l i k e s e t :

r e c += a r t i c l e s I n C l u s t e r (a r t i c l e)
i f l en (r ec) < num recs or converged :

return r e c
return h i e r a r c h i c a l k m e a n s (r ec)

We also wanted to see how supervised learning algo-
rithms could perform in generating recommendation
sets. Namely, we considered the efficacy of logistic re-
gression and SVMs with gaussian and linear kernels.
This presented the unique challenge of deducing nega-
tive, or disliked examples, given that our input is only
Li, a set of likes for user i. To do this, we leverage

clustering and choose the dislike set Di to be those
articles least similar to articles in Li. Concretely, we
define the weight of a positive cluster Cp to be the
number of articles from Li that are in that cluster.
For each positive cluster, we sort all non-positive clus-
ters by distance to the centroid. The farthest clus-
ters are weighted more than the closer ones. Finally,
once we’ve calculated this for all positive clusters, we
sample articles from the negative clusters according
to their total weights. These chosen articles are the
dislike set.

4 Results

Given our choice to look for algorithms which return
appropriately sized recommendation sets, we chose
F1 score as a metric of performance. This score re-
wards recommendation sets that contain articles we
know a user will like (based on the 70% held out
data) but penalizes for recommending other articles.
Most importantly, the F1 score will penalize us for re-
turning large recommendation sets when the user has
specified only a small number of likes. For each of our
50 data points (and for a given choice of algorithm),
we compute an F1 score from the recommendation set
returned by the algorithm. Numbers reported below
are average F1 scores across all 50 data points.

To determine the significance of our results, we com-
puted t-tests (unpaired, heteroscedastic, two-tailed)
between the F1 scores of our algorithms and found no
statistically significant difference between any of our
algorithms or feature choices (p ≥ 0.05).

4.1 Clustering

25 50 100 500
V TFIDF 0.097 0.09 0.097 0.084
V LSA 0.1 0.099 0.098 0.088
V LDA 0.096 0.095 0.092 0.05

Table 1: F1 score of naive clustering versus cluster size

25 500
V TFIDF 0.072 0.083
V LSA 0.07 0.09
V LDA 0.068 0.05

Table 2: F1 score of hierarchical clustering versus cluster
size

3

4.2 Supervised Methods

Gaussian Linear Regression
V TFIDF 0.99 0.069 0.07
V LSA 0.059 0.072 0.073
V LDA 0.014 0.023 0.023

Table 3: F1 score of different supervised methods

5 Conclusion

5.1 Recommendation Set Sizes

Across most of our algorithms (hierarchical cluster-
ing the exception) we found that recommendation set
sizes were generally quite large, often greater than
100. While this made the recall of our algorithms
quite good, our precision was often very poor. De-
spite various changes to our algorithms (e.g. increas-
ing the number of clusters, increasing the size of the
dislike set), recommendation sizes continued to be
large, leading us to suspect that post-processing on
recommendation sets is necessary to reduce size. We
consider options in the Future Work section.

5.2 Small Input Sizes

As we looked over numbers, we noticed that our al-
gorithms consistently perform better for users with
larger like sets. In order to understand this, we plot-
ted the F1 score as a function of the size of a user’s
like set, Li. We find a practically linear relationship.
As users tell us more information about what they
like, our system works better and better.

Figure 1: More input data gives us better results. Graph
of SVM with linear kernel.

We see an almost identical graph for all of our al-
gorithms, leading us to suspect that one of our fun-
damental problems is the constraint of our problem,
namely to have algorithms which perform well given
small like sets. We may simply need more training
data in order to perform well.

5.3 Classification sensitivity to Negative Ar-
ticle Selection

We wanted to see how much of a difference a simple
negative article selection performs against our hand-
crafted one.2 We ran this for TFIDF features, using
a Gaussian kernel.

Hand-crafted 0.098880461728
Simple 0.0585947853134

Table 4: TFIDF features, Gaussian kernels. Two different
negative generation systems.

We find that our negative article generator improves
the F1 score of our Gaussian SVM. This is statis-
tically significant result.3 Using a better negative-
article selection algorithm can potentially increase
our F1 score.

5.4 Overall

Recommending interesting Wikipedia articles given
only a handful of good articles is not an easy task.
Limiting ourselves to content-based recommendation
systems, and only a few training examples per per-
son is an especially challenging problem. Holding all
other variables constant, we found that the F1 score
increased almost linearly as a function of the size of a
user’s like set. Further, we found that the classifica-
tion algorithms were sensitive to the negative articles
selected.

A general concern we have is about the dataset it-
self. Although we found a way to associate numbers
with our algorithms, we feel that the dataset is far
from perfect. Specifically, we have assumed that the
survey results from each user contains every article
in A that the user finds interesting. Since there is no
way for us to enforce this, one can imagine that the
true (or unbiased) set of results should contain many
more articles than a user actually selects during the

2The simple negative article selection simply returns one article no matter what positive articles are passed in. We chose
this over randomly selecting articles because this allows for a consistent measure across runs of the algorithm.

3Running a unpaired, heteroscedastic, two-sided t-test with the null hypothesis that the two means are the same, we find
that we reject the null hypothesis (p = 0.0217).

4

survey, either because he/she forgot to select some
articles, or tried to complete the survey in haste, or
any other of a multitude of reasons. A more interest-
ing example of this is somewhat philosophical, that
often times users don’t actually know what they want
or might like. They may think they know, and will
act accordingly, but there is no reason why some of
our recommendations should be “wrong” in the way
we say they are (i.e. if the recommendation is not in
a user’s 70% held out set).

6 Future Work

We found one of the major shortcomings of our ap-
proach was that we could successfully generate good
recommendations when a user has a large set of pref-
erences, but that when there is limited data, our
problem is extremely hard to solve. For users with
small like sets, it is possible (and potentially desir-
able) to use collaborative-filtering techniques to aug-
ment their like set before running our algorithms.
More concretely, in a preprocessing step, we can aug-
ment a user’s like set by finding the k users with most
similar preferences and considering the union of their
like sets as we run our algorithms.4 Alternatively,
we can base the recommendations themselves on the
like sets of similar users, vis-a-vis a “Others like you
enjoyed...” system.

Our research suggests that another shortcoming of
our system is using feature vectors whose dimensions
are too large. Previous work has obtained compelling
results deducing article topic with only 10 to 20 fea-
tures. This same work found that SVMs can be
highly sensitive to feature vector size, and futher-
more, that the optimal size can depend on kernel
choice [3]. Even after removing all words in our
dictionary which occur less than 5 and more than
20 times across all articles, we still have more than
20, 000 features.

Finally, we feel that our strategy for returning reason-
ably sized recommendation sets can use significant
improvement. Recall our approach to this problem
was to generate algorithms which (by default) return
not only good recommendations, but also a small
number of them (given the requirement that most
recommendation engines are limited in the number of

recommendations they can give). With the exception
of our hierarchical clusterer, our algorithms (gener-
ally) return recommendation set sizes over 20 despite
our efforts to prevent this from happening. While
this boosts our recall, it negatively affects our preci-
sion. This suggests the need to modify our approach
to find algorithms which generate good recommen-
dation sets, but require additional post-processing
steps which prune the recommendation sets to rea-
sonably sized subsets. There are many feasible meth-
ods and heuristics to accomplish this; one suggestion
is to have our SVMs not return the set of articles
classified positive, but rather the k articles given the
highest probability (margin) of being positive exam-
ples.

References

[1] David M. Blei, Andrew Ng, and Michael Jordan. La-
tent dirichlet allocation. JMLR, 3:993–1022, 2003.

[2] T. K. Landauer, P. W. Foltz, and D. Laham. An
introduction to latent semantic analysis. Discourse
Processes, 25:259–284, 1998.

[3] Larry M. Manevitz and Malik Yousef. One-class svms
for document classification. J. Mach. Learn. Res.,
2:139–154, March 2002.

[4] Raymond J. Mooney and Loriene Roy. Content-based
book recommending using learning for text catego-
rization. In Fifth ACM conference on Digital libraries,
DL ’00, pages 195–204, New York, NY, USA, 2000.
ACM.

[5] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-
66, Stanford InfoLab, November 1999.

[6] Wongkot Sriurai, Phayung Meesad, and Choochart
Haruechaiyasak. Recommending related articles in
wikipedia via a topic-based model. In IICS, pages
194–203, 2009.

[7] Kristina Toutanova and Christopher D. Manning.
Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger. In Proceedings
of EMNLP, EMNLP ’00, pages 63–70, Stroudsburg,
PA, USA, 2000. Association for Computational Lin-
guistics.

[8] C.J. van Rijsbergen, S.E. Robertson, and M.F. Porter.
New models in probabilistic information retrieval. Un-
known, 1980.

4There are various measures of textual similarity which can be considered, some of which use the feature vectors we have
already generated for each article.

5

