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Introduction 

 Research preformed from the last 5 years has shown that the process of training 
deep networks can be improved by carrying out the learning process in smaller phases 
called “pre-training.” Rather than using back propagation to train the whole network, we 
could just train several small modules separately and then when assembled fine tune the 
entire network. This idea has only been applied to RNN in recent Stanford research. The 
current research done at Stanford has divided the training into three phases. First, the 
input to Hidden Unit layer connections is trained using an auto-encoding objective. 
Second, the input to the Hidden Unit layer connections are held fixed and the temporal 
connections are trained with short term memory. And third, the whole network is fine-
tuned using the main objective function. The previous research shows that this new “pre-
training” gives a better reconstruction error then previous methods, in some cases even 
out performing the best hand-engineered feature selection. This project is being done in 
conjunction with Quoc Le’s research here at Stanford. The main objective of this project 
is to apply the “pre-training” RNN algorithm to audio prediction. 

The Algorithm Architecture: 

The RNN algorithm is best described by referring to the figure below. This figure 
shows a 4 layer network, with [300 200 200 200] nodes per layer where the input and 
output are composed of 1024 values. The vertical connections are autoencoders and the 
horizontal connections are the temporal connections. The nodes shown in green are only 
used during pre-training of the autoencoders. 

 



Initial Testing: 

To verify the functionality of the RNN, and reinforce my understanding of the 
algorithms architecture I began by training an RNN using the 36000 video training 
examples Quoc had previously used to obtain results for his current research. This 
previous research was attempting to predict the last 4 frames in a video from the previous 
36 frames. 

The images shown below were generated using a 4 layer RNN with each interior 
layer containing 400 nodes. These parameters were chosen to closely match the research 
that had been previous completed using this frame prediction algorithm, and training 
data. This model took about a week and half to process it was stopped before it fully 
converged. The images shown below are the predictions made by this RNN on a test set I 
designed. The test set is a simple ball of light moving from the bottom left corner of the 
image to the top right hand corner of the image. Top left, shows the RNN’s prediction of 
the 40th frame given the previous 36 frames. Top right, shows the actual 40th frame of the 
video. Bottom left, shows the actual 36th frame, the last frame given as an input to the 
RNN. Bottom middle, shows the auto-encoder output of the 36th frame. From these 
images it’s easy to see that the RNN’s prediction of the 40th frame closely resembles 36th 
frame, the last frame given as an input to the RNN. Therefore, the model appears to 
poorly capture the temporal effect. Also interesting to note is that the auto-encoder output 
for the 36th frame scarcely resembles the actual 36th frame. This leads me to believe that 
the final objective function optimization is drastically changing the pre-trained auto-
encoder parameters, such that the decode parameters properly output a prediction only 
when the temporal connections are used.  

 

 



Application of RNN to Audio: 

After achieving reasonable results from the video data I applied the algorithm to 
audio data. My goal was to predict the last second of a 10 second clip of music. The 
training and test data is made up of 3000 audio loops obtained from the Apple program 
Soundtrack. The data clips from Soundtrack where chosen since each loop in Soundtrack 
is on average 10 seconds in length and repeats a particular beat. Conveniently the clips 
are also made to be added together to create a full recording. This enabled me to created 
77,000 unique training examples by adding the tracks together in random combinations. I 
held 1000 of the original 3000 examples aside to be used as the test set. Unfortunately, 10 
seconds of data at 44100 samples/second is too much data to process efficiently with the 
algorithm, therefore, I compressed all the data to 1024 samples/second. This compression 
reduces the complexity of the data while keeping the overall beat; the difference is hardly 
noticeable when played back on normal speakers. Each audio loop is sampled at 16bit 
resolution which is then normalize for use with the algorithm. 

The primary difference between the audio data and the video data is that each 
temporal step of the video data contains 4 frames of data, where each frame of the data 
contains 16x16 samples from the same instance in time. Each temporal step of the audio 
data contains 1 second, or 1024 samples of audio, where each sample has been obtained 
at a different instance in time.  

Initially I attempted to fit the RNN model using only the 2000 training tracks 
supplied by Soundtrack. The plot below shows the average reconstruction error for two 
different networks fit to the training data. Oddly the 2 layer, 400 nodes per layer, RNN 
achieved a lower reconstruction error then the 3 layer RNN.  

 

When applied to the 1000 example test set the average reconstruction error was 
nearly identical to the training set, implying a good fit. Unfortunately, when listening to 
the estimated data it is clear the model has converged to a locally optimal solution rather 
then the global solution causing the model to poorly reproduce the final second of audio. 
This occurs for both the examples in the test set and the examples in the training set. The 
plots below show the estimated data and the actual data for one training set example, 



probably the best one out of the many examples I viewed by hand. 

 

Rerunning the 3 layer, 400 nodes per layer, RNN model with the 77,000 training 
examples created by combining random combinations of the original 2000 training tracks 
supplied by Soundtrack resulted in a considerably better average reconstruction error as 
seen in the plot below. 

 

Some of the audio samples the model fails to predict entirely. However, after 
listening to a few of the samples that the algorithm best fits and then listening to a few of 
the ones that the algorithm fails to predict. It appears that the more times the beat repeats 
in the first 9 seconds the better it can predict the last second. The samples where the 
algorithm completely fails seem to correspond to samples where the beat never fully 
repeats in the 10 second interval. The two graphs below shows the actual last second of 
data, and the predicted last second of data for a “test-set” sample where the beat repeated 
a total of 2 times in the 10 second interval. The estimated last second is rather noisy, but 
appears to accurately reproduce the subtly in the beat. Filtering out the high frequency 
noise, and playing the clip back with the estimated last second produces a near match to 
the actual data. 



 

Shown below is this models fit to the training data example that the previous model failed 
to fit. 

  

Conclusion: 

This project demonstrated how an RNN using pre-training could be effective in 
predicting audio. These results show that an RNN can successfully predict the last second 
of audio data from the previous 9 seconds. However, it was also discovered that a large 
number of training examples are necessary to prevent the algorithm from converging to 
local minima. Further research needs to be completed testing different numbers of layers 
and different node sizes to find an optimal RNN for this type of audio prediction. The 
loops from Soundtrack only contained audio from around 500 different instruments. 
Therefore, it would be interesting to try predicting vocal audio clips, or even to test the 
algorithms sensitivity to the different types of instruments.  

References: 

Quoc, Le. “Predicting the immediate future with Recurrent Neural Networks: Pretraining 
and Applications,” NIPS, 2011. 


