
Predicting the immediate future with Recurrent

Neural Networks: Pre-training and Applications

Brandon Richardson

December 16, 2011

Introduction

 Research preformed from the last 5 years has shown that the process of training
deep networks can be improved by carrying out the learning process in smaller phases
called “pre-training.” Rather than using back propagation to train the whole network, we
could just train several small modules separately and then when assembled fine tune the
entire network. This idea has only been applied to RNN in recent Stanford research. The
current research done at Stanford has divided the training into three phases. First, the
input to Hidden Unit layer connections is trained using an auto-encoding objective.
Second, the input to the Hidden Unit layer connections are held fixed and the temporal
connections are trained with short term memory. And third, the whole network is fine-
tuned using the main objective function. The previous research shows that this new “pre-
training” gives a better reconstruction error then previous methods, in some cases even
out performing the best hand-engineered feature selection. This project is being done in
conjunction with Quoc Le’s research here at Stanford. The main objective of this project
is to apply the “pre-training” RNN algorithm to audio prediction.

The Algorithm Architecture:

The RNN algorithm is best described by referring to the figure below. This figure
shows a 4 layer network, with [300 200 200 200] nodes per layer where the input and
output are composed of 1024 values. The vertical connections are autoencoders and the
horizontal connections are the temporal connections. The nodes shown in green are only
used during pre-training of the autoencoders.

Initial Testing:

To verify the functionality of the RNN, and reinforce my understanding of the
algorithms architecture I began by training an RNN using the 36000 video training
examples Quoc had previously used to obtain results for his current research. This
previous research was attempting to predict the last 4 frames in a video from the previous
36 frames.

The images shown below were generated using a 4 layer RNN with each interior
layer containing 400 nodes. These parameters were chosen to closely match the research
that had been previous completed using this frame prediction algorithm, and training
data. This model took about a week and half to process it was stopped before it fully
converged. The images shown below are the predictions made by this RNN on a test set I
designed. The test set is a simple ball of light moving from the bottom left corner of the
image to the top right hand corner of the image. Top left, shows the RNN’s prediction of
the 40th frame given the previous 36 frames. Top right, shows the actual 40th frame of the
video. Bottom left, shows the actual 36th frame, the last frame given as an input to the
RNN. Bottom middle, shows the auto-encoder output of the 36th frame. From these
images it’s easy to see that the RNN’s prediction of the 40th frame closely resembles 36th
frame, the last frame given as an input to the RNN. Therefore, the model appears to
poorly capture the temporal effect. Also interesting to note is that the auto-encoder output
for the 36th frame scarcely resembles the actual 36th frame. This leads me to believe that
the final objective function optimization is drastically changing the pre-trained auto-
encoder parameters, such that the decode parameters properly output a prediction only
when the temporal connections are used.

Application of RNN to Audio:

After achieving reasonable results from the video data I applied the algorithm to
audio data. My goal was to predict the last second of a 10 second clip of music. The
training and test data is made up of 3000 audio loops obtained from the Apple program
Soundtrack. The data clips from Soundtrack where chosen since each loop in Soundtrack
is on average 10 seconds in length and repeats a particular beat. Conveniently the clips
are also made to be added together to create a full recording. This enabled me to created
77,000 unique training examples by adding the tracks together in random combinations. I
held 1000 of the original 3000 examples aside to be used as the test set. Unfortunately, 10
seconds of data at 44100 samples/second is too much data to process efficiently with the
algorithm, therefore, I compressed all the data to 1024 samples/second. This compression
reduces the complexity of the data while keeping the overall beat; the difference is hardly
noticeable when played back on normal speakers. Each audio loop is sampled at 16bit
resolution which is then normalize for use with the algorithm.

The primary difference between the audio data and the video data is that each
temporal step of the video data contains 4 frames of data, where each frame of the data
contains 16x16 samples from the same instance in time. Each temporal step of the audio
data contains 1 second, or 1024 samples of audio, where each sample has been obtained
at a different instance in time.

Initially I attempted to fit the RNN model using only the 2000 training tracks
supplied by Soundtrack. The plot below shows the average reconstruction error for two
different networks fit to the training data. Oddly the 2 layer, 400 nodes per layer, RNN
achieved a lower reconstruction error then the 3 layer RNN.

When applied to the 1000 example test set the average reconstruction error was
nearly identical to the training set, implying a good fit. Unfortunately, when listening to
the estimated data it is clear the model has converged to a locally optimal solution rather
then the global solution causing the model to poorly reproduce the final second of audio.
This occurs for both the examples in the test set and the examples in the training set. The
plots below show the estimated data and the actual data for one training set example,

probably the best one out of the many examples I viewed by hand.

Rerunning the 3 layer, 400 nodes per layer, RNN model with the 77,000 training
examples created by combining random combinations of the original 2000 training tracks
supplied by Soundtrack resulted in a considerably better average reconstruction error as
seen in the plot below.

Some of the audio samples the model fails to predict entirely. However, after
listening to a few of the samples that the algorithm best fits and then listening to a few of
the ones that the algorithm fails to predict. It appears that the more times the beat repeats
in the first 9 seconds the better it can predict the last second. The samples where the
algorithm completely fails seem to correspond to samples where the beat never fully
repeats in the 10 second interval. The two graphs below shows the actual last second of
data, and the predicted last second of data for a “test-set” sample where the beat repeated
a total of 2 times in the 10 second interval. The estimated last second is rather noisy, but
appears to accurately reproduce the subtly in the beat. Filtering out the high frequency
noise, and playing the clip back with the estimated last second produces a near match to
the actual data.

Shown below is this models fit to the training data example that the previous model failed
to fit.

Conclusion:

This project demonstrated how an RNN using pre-training could be effective in
predicting audio. These results show that an RNN can successfully predict the last second
of audio data from the previous 9 seconds. However, it was also discovered that a large
number of training examples are necessary to prevent the algorithm from converging to
local minima. Further research needs to be completed testing different numbers of layers
and different node sizes to find an optimal RNN for this type of audio prediction. The
loops from Soundtrack only contained audio from around 500 different instruments.
Therefore, it would be interesting to try predicting vocal audio clips, or even to test the
algorithms sensitivity to the different types of instruments.

References:

Quoc, Le. “Predicting the immediate future with Recurrent Neural Networks: Pretraining
and Applications,” NIPS, 2011.

