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1 Introduction

Genome wide association studies (GWAS) have identified many single nucleotide polymor-
phisms (SNPs) that are associated with disease. GWAS typically compare allele frequencies
of ∼ 500K individual SNPs in case patients to those of control patients using single-feature
statistics and hundreds or thousands of patients to gain enough power to overcome the
serious multiple testing hypothesis correction burden. The original Wellcome Trust Case
Control Consortium (WTCCC) paper published 24 high-confidence SNPs that are associ-
ated with 7 major diseases in a study with 14,000 cases and 3,000 shared controls ([1])

Currently, identifying SNPs associated with disease is motivated by two goals: first, to
find a parsimonious panel of testable biomarkers for disease, and second, to learn about
the biology of disease by examining which DNA markers are correlated with incidence.
Given that the cost of genome sequencing is dropping exceptionally fast, and the cost of
genotyping tag SNPs on a SNP-chip is even cheaper, the motivation for this first goal
is waning—in the future, physicians will not have to prioritize which SNPs to genotype,
but will have access to whole-chip or sequencing data for each patient. Additionally, it is
becoming increasingly clear that multiple genetic loci, and the interactions between them,
are associated with disease states, and the individual-SNP approach does not capture
the biological intricacies of many disorders. In this report, I suggest that we can build
whole-chip classifiers for disease, with selected features and interaction terms that will
help elucidate the biology of disease. I also hope to show that using all of the data results
in a better clinical predictor than the state-of-the-art predictors that include only the top
individually associated SNPs.

2 The Data

I downloaded the GWAS data from the Wellcome Trust. In my initial work, I have analyzed
the 58C controls versus Type 1 Diabetes (T1D) cases.
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Abbreviation: Description: Participants:

T1D Type 1 Diabetes 1963

58C 1958 Birth Cohort (control) 1480

2.1 Featurization

For each patient, I have genotype data from 447,221 SNPs. To convert this genotype data
into a feature vector, I first defined the minor allele to be the allele at each SNP locus
that was less common in the whole population (cases and controls). Then, for each person,
I counted the number of minor alleles that they had at each position. The final feature

vector for each patient i is {x(i)1 , x
(i)
2 , , x

(i)
447221} where x

(i)
j ∈ {0, 1, 2}.

Genotype: Minor Allele: Score:

AA G 0
AG G 1
GG G 2

2.2 Feature Ranking

Since using all 447,221 SNPs from the original GWAS study would both result in over
fitting, and be exceptionally computationally intensive, I performed a preliminary feature
ranking. For each training set in my 5-fold cross validation, I examined the SNPs individu-
ally, and calculated the chi-squared test statistic for independence. To do this, I calculated
the expected frequencies of each genotype (0,1,2) in cases and controls given the marginal
totals. Then, I compared the observed frequencies to these expected values. I ranked each
the SNPS from largest to smallest C, where C =

∑
cells((observed−expexted)2/expected).

For further analyses, I used the top r SNPs, where 1 ≤ r ≤ 102, 400, though I only report
up to r = 3, 200 in this document. These top SNPs represent the strongest individual
features that discriminate between cases and controls in the training set.

3 Naive Bayes

Using the feature vectors described above, I implemented a multinomial-event model Naive
Bayes classifier using Laplace Smoothing. I performed 5-fold cross validation (the SNPs
were ranked and selected on the training data). See Table 1 for results from the cross
validation. The % error is lowest for the top-10-feature model (6.3%) and levels off at
around 19% when more features are included.
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4 SVM with Linear Kernel

After Naive Bayes, I implemented an SVM with no kernel (u′v). I used 5-fold cross vali-
dation again, and varied the cost parameter from 10−4 to 104 by factors of 10 to create ROC
curves for each classifier. In Figure 1, the x-axis is 1-Specificity (1−(TrueNegatives/(TrueNegatives+
FalsePositives))) and the y-axis is Sensitivity (TruePositives/(TruePositives+FalseNegatives)).
The top feature alone achieved an area under the ROC curve (AUC) of 0.65. Adding more
features increased the AUC. The top 5, 10, and 25 features all had AUC ≈ .92. This is a
great improvement over the single-feature model implemented here and other single-feature
models reported in the literature.

5 SVM with Polynomial Kernel

To get interaction terms in the SVM, I added a polynomial kernel of the form: (γ ∗u′v)d. I
used γ =1/(num features) and did not vary γ during my cross validation and ROC building
trials. Even without optimizing γ, the polynomial model achieved very high area under
the curve, as is shown in Figure 2. Given the number of terms in these models, and the
relatively small number of training examples, I suspect that these models are over fitting
the data, and would not perform well on an external validation sample.

6 Conclusion

The combination of smart pre-ranking of the features and a support vector machine pro-
duced an excellent classifier for Type 1 Diabetes. The pre-ranking by chi-square test
statistic provided an O(n log n) way to reduce the feature space such that it included only
the most informative SNPs. This reduction allowed for much faster computation of the
support vector machine. For the most part, the features selected in each round of the cross
validation were the same, regardless of which random 20% of the data was left out.

The next step in this project is to try the best-fitting model on genotypes from a
different cohort of patients. Additionally, since many of the top ranked features are SNPs
that are implicated in other autoimmune disorders, I am curious about whether the model
trained on Type 1 Diabetes has any predictive value on Rheumatoid Arthritis, Crohn’s
Disease, or other autoimmune disorders, though this application is less scientifically useful.
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#Features True Positives: False Negatives: False Positives: True Negatives % Error:

1 1963 0 1480 0 43.0%
5 1869 94 222 1258 9.2%
10 1895 68 150 1330 6.3%
25 1818 145 279 1201 12.3%
50 1826 137 331 1149 13.6%
100 1745 218 318 1162 15.6%
200 1700 263 295 1185 16.2%
400 1627 336 285 1195 18.0%
800 1589 374 278 1202 18.9%
1600 1581 382 278 1202 19.02%
3200 1576 387 281 1199 19.4%

Table 1: Naive Bayes Results
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Figure 1: SVM with a linear kernal
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Figure 2: SVM with a 3-d polynomial kernel
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