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1 Introduction

When recording large musical groups it is often desirable to record the entire group at once with
separate microphones for each instrument. This technique allows the group to record a piece as
they would perform it while still producing multiple tracks for later balancing and tweaking. The
mixing process is made more difficult in this scenario, however, by the sound of each instrument
“bleeding in” to the other microphones such that the recorded instruments are not truly isolated.
Ideally we would like to completely remove this effect by separating the signals generated by each
instrument into individual tracks. In general we are unaware of the factors which contribute to the
bleeding effect so the problem is an example of blind signal separation (BSS).

One of the more common solutions to BSS is Independent Component Analysis (ICA). Most
ICA algorithms use a generative model that assumes that the observed signal is generated from a
linear combination, i.e., instantaneous mixture, of statistically independent sources. Formally, at
each time sample i we observe

x(i) = As(i) (1)

where s(i) ∈ Rn are our n source signals at time i and A is an unknown square matrix called the
mixing matrix. Given this assumption, the demixing matrix W ≈ A−1 is obtained by maximizing
the statistical independence of the source signals that we wish to isolate.

In practice, instantaneous mixtures of audio signals are quite rare. Microphones in a real
recording scenario will pick up not only the direct sound from each source but also their reflections
from walls and other objects. Even when such reflections are minimal (as might be the case in a
well-equipped recording studio) the sounds will reach each microphone at different times due to
propagation delay. A more accurate model describes each observed signal as a linear combination
of delayed source signals. Concretely, observed signal j at time sample i is given by

x
(i)
j =

n∑
k=1

ajks
(i−tjk)
k (2)

where n is the number of signals, ajk is the j, k-th element of A, and tjk is the amount of delay
from source k to microphone j.

Given this formulation of the problem we attempt to extend ICA to handle the real world
problem of signal separation in musical recordings. In Section 2, we discuss the data that we used
to test our methods. Section 3 describes each method and its results in turn. We conclude in
Section 4 with a discussion of room for improvement and future work.
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2 Data
Figure 1: Guitar data

(a) Time domain

(b) Frequency domain

(c) Time-frequency domain

We tested our approach on a number of differ-
ent data sets. Each of our recordings includes
four instruments: an electric guitar, a piano,
a tenor saxophone, and a snare drum. With
a separate microphone for each instrument we
recorded three scenarios: each instrument play-
ing independently (i.e., not the same piece of
music), a B[ major scale played in unison and
with various rhythmic patterns, and a simplified
arrangment of Tower of Power’s “Ain’t Nothin’
Stoppin’ Us Now”. In each case we recorded all
of the instruments together to create the bleed-
ing effect and also separately with no bleeding.
As a sanity check we also artificially mixed our
separately recorded tracks to recreate the bleed-
ing effect both with and without propagation
delay.

Our data is stored in a lossless audio format
that allows us to easily operate on the time do-
main (time vs amplitude) of the signal. We also
generate spectra for the signals which allow us
to operate on the frequency domain (frequency
vs amplitude) as well as spectrograms that rep-
resent the spectra at different time windows.
Figure 1 shows the data generated from the
guitar’s microphone while playing a B[ major
scale.

3 Methods and Results

Although ICA performed well in the time
domain on our artificially created instanta-
neous mixtures, the algorithm’s performance
degraded rapidly when propagation delays were
introduced. The recovered signals from our real
world recordings were less isolated than the ob-
served signals. To account for these propaga-
tion delays we subsequently focused our efforts
on separation in the frequency domain.
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3.1 ICA in the Frequency Domain

Note that after applying the Fourier transform to our signals Equation 2 becomes

x̂
(i)
j =

n∑
k=1

ajk exp(−itjkω(i))ŝ
(i)
k (3)

where x̂
(i)
j and ŝ

(i)
k are the Fourier transforms of observed signal j and source signal k, respectively,

and ω(i) is the frequency at sample i. Thus propagation delay in the time domain becomes complex
rotation in the frequency domain so the observed signals are now instantaneous mixtures of the
source signals. Our mixing matrix, however, is now a function of signal frequency.

Initially we ignored the frequency dependency in the mixing matrix by running a version of Fas-
tICA for complex-valued data (CFastICA [2]) over the Fourier transforms of our observed signals.
We recovered the source signals by applying the inverse Fourier transform to the resulting inde-
pendent components. Our hope was that the propagation delays (≈ 3ms) would be small enough
that the frequency dependent components of the mixing matrix would be negligible.

We only had small success in separating tracks using CFastICA. In artificially mixed B[ scale,
the drums were entirely separated out of one track, though the melodic instruments are all mixed
to a greater extent than in the source tracks. In all tracks with propagation delay, both natural
and artificial, the outputted signals were more mixed than the source files. This mixture occurred
because the source tracks are co-dependent in the frequency domain.

We also decided to try running FastICA on the magnitude of our frequency responses as a
heuristic to generate the mixing matrix. This greatly simplifies the signal by removing the phase
information, which in turn ignores any propogation delays. To recover our signals, we take the
resulting demixing matrix and apply it to the frequency response of our observed signals. We then
apply an inverse Fourier transform on the results to get our estimated independent components.

Figure 2: Frequency Domain Results

(a) Observed (b) Recovered

We had success in isolating artificially mixed tracks by running FastICA on the magnitude
of the Fast Fourier Transform. In both the artificially mixed scale and jam tracks, the piano

3



and snare drum separated well. The snare drum in particular isolated with effectively no audible
interference from other sources. Figure 2 shows the observed and recovered frequency domain
signals for the snare drum on B[ scale. We hypothesize that the snare drum isolates particularly
well in the frequency domain because its frequencies are the most independent. The guitar, piano,
and saxophone play many of the same notes over the course of a track (and in the case of the B[
scale, all of the same notes). This means that their frequencies are heavily dependent, leading ICA
to perform poorly. However, the snare drum does not vary in frequency over the course of a track
and is in this way the most unique and independent instrument, so ICA is able to recover the drum.

3.2 Frequency Banded ICA

We can rewrite Equation 3 in a more familiar form as

x̂(i) = A(ω(i))ŝ(i) (4)

where A(ω(i)) is our mixing matrix as a function of frequency. Thus the problem in the frequency
domain is a set of instantaneous mixtures as in Equation 1. Since the frequency dependencies
in the mixing matrix are similar for close values of ω we can run ICA on a number of relatively
small frequency bins. The source signals are recovered by appending the resulting independent
components and applying the inverse Fourier transform.

One issue that arises with this approach is known as the permutation problem. Given only the
observed signals, the permutation of the recovered sources is arbitrary. We must therefore ensure
that the permutation of sources recovered by ICA is the same for each frequency bin. A number
of approaches have been suggested to overcome the permutation problem [3, 4]. We implemented
the simplest of these, which calculates the demixing matrix for the frequency bins one at a time
using the matrix calculated for the previous bin as the initial guess for the next bin. Since the
neighboring frequency values should be somewhat close to one another this helps to ensure that
the permutation will not change from bin to bin.

Unfortunately this approach to the permutation problem was insufficient to overcome the com-
plexity of our data. Although we believe that Equation 4 was a good way to view the problem (and
the literature would seem to agree [3, 4]), the results we obtained from this method were unsatis-
factory. Many of the recovered signals were washed out and clearly contained sounds generated by
all of the sources. For our data at least, a more sophisticated solution to the permutation problem
is necessary.

3.3 ICA with Linear Regression

Our third approach to the propagation delay problem was to modify how the mixing matrix is
computed in ICA directly. By inverting the problem we define the j, k-th element of our demixing
matrix as follows

wjk(ω) = cjk exp(itjkω) (5)

FastICA uses a deflation method that solves for the source signals one at a time [1]. In the iteration

that computes source signal j, wjk is updated to be the mean over all w
(i)
jk where w

(i)
jk is the estimate

for wjk computed from sample i. To remove the frequency dependency from our model, we modify

this update step to instead calculate cjk and tjk from the w
(i)
jk ’s.
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Taking the natural logarithm of Equation 5 we obtain

logwjk = log cjk + itjkω (6)

which is linear in ω. We can therefore use linear regression on logw
(i)
jk and ω(i) to obtain estimates

for log cjk and itjk from which we calculate cjk and tjk. Once all the cjk and tjk’s are computed
we can use Equation 5 once more to write our demixing matrix as a function of ω and recover the
source signals.

This change essentially modifies our estimate of wjk by fitting a 1-deminsional polynomial to
the wjk’s at each frequency instead of a 0-dimensional polynomial. While this change seemed
promising and logical, its results were not satisfactory. Introducing the new degrees of freedom
resulted in FastICA’s gradient descent failing to converge in any reasonable amount of time. The
values of cjk and tjk produced at each iteration appeared at times to be oscillatory and at other
times to randomly shift. This method may have the potential to be successful with future work
and investigation but at the time of writing was not successful.

4 Conclusion

In conclusion, signal separation on real world data is difficult. We primarily focused our separation
methods on accounting for the volume decay and propagation delay present in recording multiple
instruments in one setting. However, solving for these variables given the different mixes and the
knowledge that the sources are independent pieces of music was a tougher task then we expected.
We started with an algorithm that was capable of separating the observed signals if there was no
propagation delay present, and throughout our various methods the best results were to separate
out one or two instruments. We attribute this result to the difficulty of simultaneously solving for
volume decay and propagation delay as well as the difficulty present in musical data sets - that the
sources are not entirely independent.

While our results are not indicative of finding an optimal solution to the problem, we do feel
that we have made progress. We were able to separate some of the signals and succesfully isolate
some of the instruments in our data set. In addition, we also investigated innovative methods to
solve for both the volume decay and propogation delay which, given more time and effort, may be
able to produce better results.
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