
Using AdaBoost for Real-Time Object Detection on

Programmable Graphics Hardware

Farooq Mela – CS229 Fall 2010

Introduction

An object detection algorithm is able to identify an object of a given type in a digital image. The use of

machine learning methods for object detection has been well studied. One of these methods is based on a

sliding-window approach, where the classifier is a detection window of fixed size and evaluates some

criteria over all pixel positions and various resolutions of the input image. We apply machine learning to

simple sliding-window classifiers to build a robust detector that can be trained to recognize various objects.

The rapid increase in both the performance and programmability of recent graphics hardware has made

the discrete graphics processing unit (GPU) a compelling platform for computationally demanding tasks.

Furthermore, this hardware is especially suited to both image processing and data-parallel computation.

Our algorithm is inherently data-parallel, coherent-access, memory-intensive and image-oriented, so it is

well suited to GPU implementation. In addition, media is ever increasing in both resolution and quantity.

Methods that run in real-time for low-resolution images or video streams are inadequate for high definition

photos and high definition, high frame-rate video streams. Thus, our present work is motivated by our

desire to adapt a robust object detection technique to the processing demands of modern media.

Object Detection

The object detection method we employed was based on the work of Viola and Jones. Each sliding

window is constructed of positive and negative regions. The value of a window at a particular position on

an image is the sum of the pixels in the positive regions minus the sum of the pixels in the negative regions.

These windows are evaluated over all possible positions over the input image and scaled down

versions of the input image. Each scaled down version of the image is half the size of the previous in each

dimension, until a minimum image dimension is reached (in our case 24 pixels).

Viola and Jones propose accelerating the computation of sums of pixels in the evaluation of a window

by a preprocessing step wherein we construct the integral image (also known as a summed-area table) of

the input image. If we have an image with width W and height H, then let

€

im(x,y) be the value of the

pixel at position (x,y) for

€

0 ≤ x <W and

€

0 ≤ y < H . We can then define the integral image ii(x,y) as

€

ii(x,y) =

€

im(x,y)
y=0

j

∑
x=0

i

∑

The integral image can be computed dynamic programming-style by a simple recurrence relation:

€

ii(x,y) = im(x,y) + ii(x −1,y) + ii(x,y −1) − ii(x −1,y −1)

where

€

ii(x,y) = 0 if either x or y is negative. Given the integral image, the sum of any rectangle of pixels

in the original image can be computed with just four array references in the integral image at the corners of

the rectangle:

€

im(x,y)
y=bottom

top

∑
x= left

right

∑ = ii(right, top) − ii(left −1,top) − ii(right,bottom −1) + ii(left −1,bottom −1)

We can construct a weak classifier by choosing sliding windows at random, and testing them against

our training data. We stop when we find one with acceptable false positive (when faces are falsely

detected) and false negative (images in which faces are missed by the classifier) rates.

Learning with AdaBoost

We can combine a number of weak classifiers into a much stronger one using the AdaBoost method,

which stands for adaptive boosting. AdaBoost constructs a series of weak classifiers

€

hi and a set of

weights

€

α i for those classifiers and outputs a strong classifier. Given training data and labels

€

{(x1,y1),...,(xm ,ym)} , where

€

yi ∈{−1,+1} , we define the weighted training error

€

E(D,h) of a

classifier h according to the distribution D as:

€

E(D,h) = Di1{yi ≠ h(xi)}
i=1

m

∑ , where

€

Di =1
i=1

M

∑

AdaBoost begins by setting each

€

Di =
1
M

. Then, for

€

t =1...

€

T , it chooses the classifier

€

ht that

minimizes the error with respect to the distribution D:

€

ε = E(D,ht) . (Here, the algorithm terminates if it

cannot find a classifier with

€

ε < 0.5). It then sets the weight for the classifier

€

α t =
1
2
ln(1−ε

ε
) , which

assigns a larger weight to classifiers with smaller error and smaller weight to classifiers with larger error.

Finally, the distribution D is updated:

€

Di = Di exp(−α t yiht (xi)) for i = 1 … m

Then the distribution is renormalized to have unit sum. This update to D increases (boosts) the weights

for misclassified training examples and decreases the weights for correctly classified training examples.

The output of AdaBoost is T classifiers and associated weights for each classifier. The composite

“strong” classifier is then:

€

H(x) = sgn(α ihi
i=1

T

∑ (x))

The advantage of using AdaBoost is that, even if we only have relatively weak classifiers, we can

combine them to build a very accurate classifier. We would expect that, as we increase T (the number of

weak classifiers), that H would suffer from over-fitting, so that even though we might be decreasing our

training error as we increase T, our test error will increase. However, the surprising thing about AdaBoost

is that, as we increase T, and even after our training error has gone to zero, the test error continues to

decrease! There is still debate on why this is the case; some researchers have postulated that as T increases,

AdaBoost is maximizing the classification margins.

Of course, there are caveats: the performance of AdaBoost depends on good training data and our

ability to choose enough weak classifiers. AdaBoost can fail if the training data is noisy, if the weak

classifiers are too weak, or if we cannot create enough weak classifiers.

GPU Implementation

Now that we have described our algorithm, we will describe our GPU-accelerated implementation.

We used a Linux machine with a quad-core Q6600 processor and an NVIDIA 8800GT GPU. After

implementing the algorithm on the CPU, we used OpenGL 3.0 and programmable fragment programs to

implement the sliding window calculations and image down-sampling. The CPU must compute the integral

image because of the data interdependence of the neighboring pixels in the integral image.

We represent our various sliding windows as textures, where the texel value 0 indicates a negative

pixel, and a texel value of 255 indicates a positive pixel. We store the sliding-window primitives as textures

on the onboard GPU memory, which is generally faster than main memory, has a very wide bus interface,

and is well-suited to data-parallel access. We will use these sliding-window primitives in our fragment

program, which is executed for each pixel and each resolution of the output texture. If our input image is

128x128, we run our sliding-window operation at the 128x128, 64x64, and 32x32 resolutions in a single

pass. GPU hardware can compute all downsampled versions of our image very quickly; furthermore it

represents each image in an optimized format known as a mipmap, giving us better texture read

performance and lower memory usage. Each integral image is loaded into GPU memory as a texture using

glTexImage and then downsampled using glGenerateMipMaps.

The fragment shader is at the heart of the speedup. Once the mipmapped integral images are loaded

into GPU memory, the fragment shader is invoked to render an output texture that is the size of the original

image. The fragment shader program executes independently and in parallel at each pixel location, where it

computes H(x) at that pixel, to be stored in the output texture.

 For each image resolution, the fragment shader computes the α-weighted sum of the sliding

window evaluated on the integral image at the pixel location. If any of the sums are positive, the fragment

shader outputs one, otherwise it outputs zero. Thus, we can compute H(x) for an image x at every pixel

position for every resolution in a single pass. The CPU can then read back the output texture, and wherever

there is a one, the object detection algorithm has predicted an object (in our case, a face).

Experimental Results

We trained our object detector using the UCI Machine Learning face image database (the source of

the image in the diagram above) for positive training examples and non-face images downloaded from

Google Images as negative training examples. Each image was converted to 8-bit grayscale. By randomly

choosing 70% of the data for training and 30% for testing, and only choosing weak classifiers with both

less than 15% false positives and less than 15% false negatives, we were able to achieve a test error rate of

less than 5% with T=30. However, our CPU implementation ran at less than real-time rates; just to bring

the number of images classified per second to more than 10, we rescaled all of our input images to 256x256

before computing the integral images or performing any other processing. After implementing the same

algorithm on the GPU, we achieved approximately an 11x speed-up at the same resolution. These results

have been achieved on ca. 2007 consumer-level hardware. We have not yet gone to any lengths to optimize

our GPU implementation, so it is a certainty that much higher performance can be achieved.

In conclusion, we find that GPUs provide ample opportunity for the acceleration of image

processing algorithms, and that our implementation of real-time object detection would be suitable for the

kinds of high-resolution images or high-framerate video streams that have become commonplace.

0	

100	

200	

300	

400	

500	

600	

700	

800	

128x128	
 256x256	
 512x512	
 1024x1024	

CPU	
 Images/Sec	

GPU	
 Images/Sec	

