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Introduction 

An object detection algorithm is able to identify an object of a given type in a digital image. The use of 

machine learning methods for object detection has been well studied. One of these methods is based on a 

sliding-window approach, where the classifier is a detection window of fixed size and evaluates some 

criteria over all pixel positions and various resolutions of the input image. We apply machine learning to 

simple sliding-window classifiers to build a robust detector that can be trained to recognize various objects. 

The rapid increase in both the performance and programmability of recent graphics hardware has made 

the discrete graphics processing unit (GPU) a compelling platform for computationally demanding tasks. 

Furthermore, this hardware is especially suited to both image processing and data-parallel computation. 

Our algorithm is inherently data-parallel, coherent-access, memory-intensive and image-oriented, so it is 

well suited to GPU implementation. In addition, media is ever increasing in both resolution and quantity. 

Methods that run in real-time for low-resolution images or video streams are inadequate for high definition 

photos and high definition, high frame-rate video streams. Thus, our present work is motivated by our 

desire to adapt a robust object detection technique to the processing demands of modern media. 

Object Detection 

The object detection method we employed was based on the work of Viola and Jones. Each sliding 

window is constructed of positive and negative regions. The value of a window at a particular position on 

an image is the sum of the pixels in the positive regions minus the sum of the pixels in the negative regions. 

        



These windows are evaluated over all possible positions over the input image and scaled down 

versions of the input image. Each scaled down version of the image is half the size of the previous in each 

dimension, until a minimum image dimension is reached (in our case 24 pixels). 

Viola and Jones propose accelerating the computation of sums of pixels in the evaluation of a window 

by a preprocessing step wherein we construct the integral image (also known as a summed-area table) of 

the input image. If we have an image with width W and height H, then let 

€ 

im(x,y)  be the value of the 

pixel at position (x,y) for 

€ 

0 ≤ x <W  and 

€ 

0 ≤ y < H . We can then define the integral image ii(x,y) as 

€ 

ii(x,y) =

€ 

im(x,y)
y=0

j

∑
x=0

i

∑  

The integral image can be computed dynamic programming-style by a simple recurrence relation: 

€ 

ii(x,y) = im(x,y) + ii(x −1,y) + ii(x,y −1) − ii(x −1,y −1)  

where 

€ 

ii(x,y) = 0 if either x or y is negative. Given the integral image, the sum of any rectangle of pixels 

in the original image can be computed with just four array references in the integral image at the corners of 

the rectangle: 

€ 

im(x,y)
y=bottom

top

∑
x= left

right

∑ = ii(right, top) − ii(left −1,top) − ii(right,bottom −1) + ii(left −1,bottom −1)

 

We can construct a weak classifier by choosing sliding windows at random, and testing them against 

our training data. We stop when we find one with acceptable false positive (when faces are falsely 

detected) and false negative (images in which faces are missed by the classifier) rates. 

Learning with AdaBoost 

We can combine a number of weak classifiers into a much stronger one using the AdaBoost method, 

which stands for adaptive boosting. AdaBoost constructs a series of weak classifiers 

€ 

hi  and a set of 

weights 

€ 

α i  for those classifiers and outputs a strong classifier. Given training data and labels 

€ 

{(x1,y1),...,(xm ,ym )} , where

€ 

yi ∈{−1,+1} , we define the weighted training error 

€ 

E(D,h)  of a 

classifier h according to the distribution D as: 

€ 

E(D,h) = Di1{yi ≠ h(xi)}
i=1

m

∑ , where 

€ 

Di =1
i=1

M

∑  



AdaBoost begins by setting each 

€ 

Di =
1
M

. Then, for 

€ 

t =1...

€ 

T , it chooses the classifier 

€ 

ht that 

minimizes the error with respect to the distribution D: 

€ 

ε = E(D,ht ) . (Here, the algorithm terminates if it 

cannot find a classifier with 

€ 

ε < 0.5). It then sets the weight for the classifier

€ 

α t =
1
2
ln(1−ε

ε
) , which 

assigns a larger weight to classifiers with smaller error and smaller weight to classifiers with larger error. 

Finally, the distribution D is updated: 

€ 

Di = Di exp(−α t yiht (xi))  for i = 1 … m 

Then the distribution is renormalized to have unit sum. This update to D increases (boosts) the weights 

for misclassified training examples and decreases the weights for correctly classified training examples. 

The output of AdaBoost is T classifiers and associated weights for each classifier. The composite 

“strong” classifier is then: 

€ 

H(x) = sgn( α ihi
i=1

T

∑ (x)) 

The advantage of using AdaBoost is that, even if we only have relatively weak classifiers, we can 

combine them to build a very accurate classifier. We would expect that, as we increase T (the number of 

weak classifiers), that H would suffer from over-fitting, so that even though we might be decreasing our 

training error as we increase T, our test error will increase. However, the surprising thing about AdaBoost 

is that, as we increase T, and even after our training error has gone to zero, the test error continues to 

decrease! There is still debate on why this is the case; some researchers have postulated that as T increases, 

AdaBoost is maximizing the classification margins. 

Of course, there are caveats: the performance of AdaBoost depends on good training data and our 

ability to choose enough weak classifiers. AdaBoost can fail if the training data is noisy, if the weak 

classifiers are too weak, or if we cannot create enough weak classifiers. 

GPU Implementation 

Now that we have described our algorithm, we will describe our GPU-accelerated implementation. 

We used a Linux machine with a quad-core Q6600 processor and an NVIDIA 8800GT GPU. After 

implementing the algorithm on the CPU, we used OpenGL 3.0 and programmable fragment programs to 



implement the sliding window calculations and image down-sampling. The CPU must compute the integral 

image because of the data interdependence of the neighboring pixels in the integral image. 

We represent our various sliding windows as textures, where the texel value 0 indicates a negative 

pixel, and a texel value of 255 indicates a positive pixel. We store the sliding-window primitives as textures 

on the onboard GPU memory, which is generally faster than main memory, has a very wide bus interface, 

and is well-suited to data-parallel access. We will use these sliding-window primitives in our fragment 

program, which is executed for each pixel and each resolution of the output texture. If our input image is 

128x128, we run our sliding-window operation at the 128x128, 64x64, and 32x32 resolutions in a single 

pass. GPU hardware can compute all downsampled versions of our image very quickly; furthermore it 

represents each image in an optimized format known as a mipmap, giving us better texture read 

performance and lower memory usage. Each integral image is loaded into GPU memory as a texture using 

glTexImage and then downsampled using glGenerateMipMaps. 

The fragment shader is at the heart of the speedup. Once the mipmapped integral images are loaded 

into GPU memory, the fragment shader is invoked to render an output texture that is the size of the original 

image. The fragment shader program executes independently and in parallel at each pixel location, where it 

computes H(x) at that pixel, to be stored in the output texture. 

 



 For each image resolution, the fragment shader computes the α-weighted sum of the sliding 

window evaluated on the integral image at the pixel location. If any of the sums are positive, the fragment 

shader outputs one, otherwise it outputs zero. Thus, we can compute H(x) for an image x at every pixel 

position for every resolution in a single pass. The CPU can then read back the output texture, and wherever 

there is a one, the object detection algorithm has predicted an object (in our case, a face). 

Experimental Results 

We trained our object detector using the UCI Machine Learning face image database (the source of 

the image in the diagram above) for positive training examples and non-face images downloaded from 

Google Images as negative training examples. Each image was converted to 8-bit grayscale. By randomly 

choosing 70% of the data for training and 30% for testing, and only choosing weak classifiers with both 

less than 15% false positives and less than 15% false negatives, we were able to achieve a test error rate of 

less than 5% with T=30. However, our CPU implementation ran at less than real-time rates; just to bring 

the number of images classified per second to more than 10, we rescaled all of our input images to 256x256 

before computing the integral images or performing any other processing. After implementing the same 

algorithm on the GPU, we achieved approximately an 11x speed-up at the same resolution. These results 

have been achieved on ca. 2007 consumer-level hardware. We have not yet gone to any lengths to optimize 

our GPU implementation, so it is a certainty that much higher performance can be achieved. 

 

In conclusion, we find that GPUs provide ample opportunity for the acceleration of image 

processing algorithms, and that our implementation of real-time object detection would be suitable for the 

kinds of high-resolution images or high-framerate video streams that have become commonplace. 
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