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Background and Motivation 

Originally discovered as an antiviral mechanism, RNA interference (RNAi) has since then been 
shown to play a large role in the natural cellular regulation of endogenous transcripts. The products of 
the RNAi pathway and the effectors of transcript regulation are small 18-30 nucleotide (nt) small RNAs 
that are homologous in sequence to their target transcripts. Consequently, discovery of small RNAs that 
are identical in sequence to an endogenous transcript implies possible role of the RNAi pathway in the 
regulation of said transcript.  

Many groups of small RNAs exist in the cell are encoded by the host genome naturally. Most of 
the well characterized groups of small RNAs are typically oriented antisense to the target transcripts 
and are believed to be produced by templating off the endogenous transcript. In the nematode C. 
elegans, this includes a class of 21-23nt small RNAs that have been largely implicated in transcriptional 
silencing. Two other classes of less-well-characterized small RNAs of sizes of 23-24nt and 26nt, 
respectively, also appear to have silencing effect. While we will not 
discuss the mechanistic details regarding the generation of these 
small RNAs here, we will note that these small RNAs are believed 
to be produced by templating off the endogenous transcript, hence 
resulting in an antisense orientation of the small RNAs relative to 
the transcript (Figure 1). 

But what about small RNAs that align to the sense strand 
of the transcript? Do these exist, and if so, do have any function? 
Unfortunately, many confounding factors thwart any ventures to 
answer this question. While I will not take time here to survey 
those difficulties, I focus on the problem that small RNA 
sequencing libraries are often plagued with mRNA degradation, 
making small RNA datasets hard to evaluate. This problem arises 
from the fact that small RNAs are extracted using a size-selection 
method which selects for RNAs of 18-30 nucleotides in length. 
Hence, any larger transcripts that degrade naturally into this size 
range by chance (e.g. through random shearing of longer 
transcripts during the RNA extraction procedure) will also be 
captured by sequencing. As a result, researchers often ignore 
looking at small RNAs that align to sense strands of transcripts 
because they are mostly plagued with contamination. While this is 
true in many case-by-case analyses, this is a poor assumption to make and may drastically limit our 
ability to detect novel signals. 

The goal of this project is two fold. First, I aim to characterize distinct small RNA signals over 
loci throughout the genome. Using two unsupervised algorithms, k-means clustering and principal 
component analysis, I expect to be able to both quantify the representation of known signals throughout 
the transcriptome as well as potentially identify new small RNA signals. As a second goal, I aim to 
develop an algorithm to categorize small RNA distributions as “degradation” or as a specific type of 
signal. In particular. I will build an SVM classifier for this task and experiment with values for the 
parameters. Training sets will be picked from a combination of exemplary examples from the 
unsupervised clustering performed previously. In combination, these two goals would allow 
enhancement of the signal-to-noise ratio in small RNA datasets and provide the potential for discovery 
of novel small RNA signals from biological datasets. 
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Figure 2: (Left) 
PCA of sense-
oriented small RNA 
size distributions. 
Each data point is a 
transcript, colored 
by cluster 
assignment using k-
means clustering 
with k=5. (Right) 
Centroid 
distributions of 
clusters. 

Methods 

Data Set 

A collection of 15 small RNA datasets were obtained from the nematode C.elegans using whole 
animals. In brief, small RNAs were sequenced using the Solexa platform, and sequences were aligned to 
the C. elegans transcriptome. RNA counts of each length for each gene were added up. Each dataset was 
aligned to the genome using the Bowtie short read aligner.  

In order to select training points that offer high information content, the total of 49000 
transcripts were filtered, for each sample, to include only transcripts that contain at least 20 small RNA 
read alignments and at least 10 unique sequences. 

Feature Selection 
The high dimensionality of biological datasets, the limited evidence for making assumptions of 

independence, and the stochastic process of generating these datasets makes feature selection both a 
challenging and critical aspect for the success of applying any machine learning algorithm on such 
datasets. The initial set of features selected for this analysis was based on personal experience with 
small RNA datasets as well as characterizations of small RNA biogenesis as revealed in the literature.  
For each gene, I calculated the following possible features: 

1. Total number of RNAs aligned 
2. Median redundancy of RNAs aligned (i.e. number of aligned RNAs per unique sequence)  
3. Proportion of number of RNAs of each length (18bp to 29bp) aligned 
4. Proportion of number of RNAs over each 3nt range (eg. 19-21nt, 20-22nt) 

Features were evaluated the ability of these features to separate the data using k-means (see below). In 
particular, I found that simply including (3) seemed to provide the best results; clusters of genes could 
be separated and identified as possible degradation products based on visual inspection of the small 
RNAs (using UCSC Genome Browser, alignment visualization tool). Including (1) and (2) expectedly 
resulted in features that distinguished the data based on expression level and genomic structure, 
respectively. Surprisingly, including (4) actually reduced the separation of the features without 
improving robustness of classification. 

Unsupervised Learning:  

Principal Component Analysis and K-means Clustering 

For each sample, highly expressed genes were subject to principal component analysis using the 
set of features selected from alignment to the sense orientation. Results from each sample was 
consistent: principal component analysis of sense-oriented small RNA size distributions reveal distinct 
separation of data points. The first two principal components explained an average of 45% and 27% of 
the variance, respectively. Analysis of the feature loadings for first two components reveal that these 
correspond to distributions with high proportions of 22-23nt RNAs and larger (27-29nt) RNAs, 
respectively. Further, we performed k-means clustering on these features and compared the results 
with those from PCA (Figure 2), revealing clusters with centroid positions reminiscent of siRNA size 
distributions (purple, blue, and orange clusters) as well as degradation (green and red clusters.) The 
choice of K was selected between values of 3 to 7 based on robustness of the clustering for producing 
similar cluster centroids. 



 To test that our method for detecting mRNA degradation is unlikely to misclassify real small 
RNA signals (based on inherent noise in the small RNA population), we performed the same procedures 
on a sample of small RNA sequences from a different chemical preparation that is known to select for 
one class of 21-23nt siRNAs. This reveals that aggregate small RNA profiles for large sets of genes 
indeed exhibit a strong characteristic and contain very little noise (Supplemental Figure 1). These 
distributions are consistent regardless of the k used in k-means analysis (data not shown).  

 Since the populations of small RNAs that we have termed “mRNA degradation” have not been 
previously characterized as a class of functional small RNAs (nor has specifically studying mRNA 
degradation signals been of any interest to the small RNA scientific community), we have no convincing 
evidence from this analysis that these are indeed non-functional or result from degraded mRNAs. 
However, we do find an indication for this suggestion: genes which exhibit small RNA distributions 
with the “degradation characteristic” also exhibit high mRNA levels (Supplemental Figure 2), 
suggesting that they are likely degradation products from these very abundant sources. 

Supervised Learning: Support Vector Machines 

Principal component analysis and K-means clustering are useful for discovery of unanticipated 
relationships in the features without bias of prior knowledge regarding the data. However, this 
approach requires supervision to ensure the right choice of K in k-means clustering. Furthermore, k-
means clustering is a heuristic algorithm and results may vary largely between replications. Both PCA 
and K-means also relies on the significant representation of each type of data in the dataset—a signal 
that is not represented at a high level would be merged into an adjacent cluster in K-means and would 
not contribute to a significant proportion of the variance in PCA. These above assumptions made by the 
unsupervised algorithms make them poor candidates for general detection of mRNA degradation 
signals in novel datasets, particularly datasets from various genetic backgrounds that could drastically 
perturb the landscape of small RNAs. Hence, we  use the insight gained from these techniques to build a 
support vector machine classifier for detection of mRNA degradation signals. 

Since no labeling of positive or negative training sets exist, we define our training set using training 
points with exemplary traits as defined from our previous analysis. 

Selection of Negative Training Examples 
To generate negative examples, I took the genes falling into the “degradation” clusters (in green 

and red from Figure 2), and selected for those genes which exhibit exemplary characteristics to those we 
have identified as “degradation”. In particular, we chose genes whose small RNA distributions on the 
sense strand are (a) close to the centroid (sum of squared differences <0.4, maximum squared 
difference of any length <0.2), and (b) have high mRNA levels (>100 mRNA counts).  Justification for 
the choice of cutoff for the first criteria is shown by examining a distribution of the squared differences 
(Supplemental Figure 3), while justification for the second criteria was noted previously (Supplemental 
Figure 2).   

Selection of Positive Training Examples 
Positive training examples were generated using 

distributions of small RNAs mapping to the antisense strand, 
since these are the canonical siRNAs. Even when k is set to a 
large number, no centroid with a characteristic “degradation” 
signal is observed (Figure 3, k=8). Hence, all genes close to 
centroids in the antisense strand  were used as positive training 
examples (evaluated based on squared differences of 
proportions as per negative training sets). 

Evaluation 

The goal of our classifier is to be able to take any dataset and label each loci as degradation or 
siRNA signal. As such, we are interested in the generalization error of a classifier for labeling the loci in 
at least one whole small RNA library. Hence, we perform 5-fold cross-validation on the 15 samples to 

Figure 3. K-means centroids of 
antisense small RNAs. K=8 



select for optimal parameters for the model (i.e. train on points form 12 samples, test on points from 3 
samples). An alternative method for evaluation is k-fold cross-validation of all data points without 
grouping by sample; however, this provides an underestimation of generalization error. This 
underestimation is due to the fact that the largest source of variance in small RNA datasets is that 
between different technical preparations of the RNA libraries; revealing a proportion of points from any 
library provides indications as to where the remaining points in that library might lie. 
 SVMs were built for each training set: positive training examples were labeled as “1” and 
negative training examples (i.e. degradation) were labeled as “0”. Different kernels were explored for 
their performance in the SVM in conjunction with varying parameter values such as those for C, gamma, 
or degree of polynomial, as pertained to the particular kernel. The polynomial and linear kernels 
performed worse than the radial kernel for all parameters tested (not shown). The logistic kernel 
exhibited the worst performance. For the radial kernel, increasing C, the cost value for outliers, resulted 
in better training and test errors if ɣ is kept low (Table 1). If ɣ and C are increased simultaneously, the 
model overfits the data, resulting in extremely low training error and high test error. In particular, such 
values biased towards an unacceptably high false positive rate, labeling all points “1”. Optimal values for 
test error, training error, and a balance of false positive and false negative rates can be achieved with C 
taking values between 2 to 8 and ɣ taking values between 0.01 and 0.1.  

Table 1. Average Test and training errors (5-fold validation) using the Radial Kernel for varying values of C and ɣ 
  Training Error Test Error 

C gamma Avg % Error Avg %FP  Avg %FN  Avg% Error Avg%FP Avg%FN 

0.005 0.0156 1.81 35.42 0.05 2.87 47.51 0.06 

0.005 0.0312 1.60 31.58 0.03 2.76 46.43 0.04 

0.005 0.0625 1.77 35.41 0.02 3.11 52.34 0.01 

0.005 0.125 3.42 68.43 0.00 5.10 87.09 0.00 

0.005 0.25 5.04 100.00 0.00 5.68 100.00 0.00 

0.005 0.5 5.04 100.00 0.00 5.68 100.00 0.00 

0.02 0.0156 0.99 19.44 0.03 1.79 27.14 0.18 

0.02 0.0312 0.82 15.93 0.03 1.50 22.59 0.17 

0.02 0.0625 0.74 14.41 0.03 1.41 21.28 0.18 

0.02 0.125 1.02 20.45 0.02 2.12 35.30 0.07 

0.02 0.25 3.16 63.22 0.00 4.92 83.73 0.00 

0.02 0.5 5.03 99.76 0.00 5.68 100.00 0.00 

0.5 0.0156 0.42 7.23 0.06 0.86 10.84 0.23 

0.5 0.0312 0.36 6.02 0.06 0.83 10.04 0.25 

0.5 0.0625 0.30 5.08 0.05 0.81 9.75 0.24 

0.5 0.125 0.23 3.81 0.03 0.83 10.00 0.24 

0.5 0.25 0.16 2.81 0.02 0.88 10.63 0.25 

0.5 0.5 0.12 2.23 0.01 2.43 39.34 0.09 

2 0.0156 0.34 5.53 0.07 0.76 8.65 0.25 

2 0.0312 0.26 4.34 0.05 0.76 8.39 0.26 

2 0.0625 0.19 3.02 0.04 0.76 8.56 0.25 

2 0.125 0.13 2.19 0.02 0.78 9.15 0.25 

2 0.25 0.09 1.51 0.01 0.83 9.87 0.26 

2 0.5 0.04 0.79 0.00 1.56 22.07 0.22 

8 0.0156 0.28 4.43 0.06 0.74 7.92 0.27 

8 0.0312 0.19 2.81 0.05 0.79 8.50 0.28 

8 0.0625 0.13 2.04 0.03 0.76 8.42 0.26 

8 0.125 0.08 1.35 0.01 0.78 8.87 0.27 

8 0.25 0.03 0.64 0.00 0.82 9.60 0.27 

8 0.5 0.01 0.28 0.00 1.59 22.14 0.24 

Conclusions and Future Directions 

By building a model to filter mRNA degradation signals from sense-oriented small RNA profiles, we 
provide an opportunity for further exploration novel pathways and functions of small RNA regulation. 
Comparisons of small RNA profiles of particular genes between samples in various genetic backgrounds 
would be the logical next step in deciphering the function and regulation of these sense-oriented small 
RNAs. Characteristic differences may exist between sense-oriented small RNAs and antisense-oriented 
small RNAs that we have not explored in this work. Nevertheless, the results from this study illuminate 
the large class of sense-oriented small RNAs that have previously been ignored.  



Supplemental Figures 
 
Supplemental Figure 1. K-means and 
PCA of small RNA distributions from 
different RNA cloning procedure that 
selects for canonical siRNAs. 

 
 

 

Supplemental Figure 2. mRNA Seq data from same sample 
was used to compare to small RNA data. Higher counts 
indicate higher expression level. Genes from degradation 
cluster (colored as in Figure 2) are highly expressed in mRNA, 
confirming implications of degradation in siRNA signal. 
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Supplemental Figure 3. 
(Left) Distribution of sum-
of-squared differences 
between genes in the 
orange “degradation” 
cluster (Figure 3) and their 
centroid. Alternatively, we 
can calculate the 
maximum-squared 
differences of any RNA 
length between each gene 
and its centroid (right). 


