
CS229 FINAL PROJECT - FALL 2010 1

Predicting Wireless Channel Utilization at the PHY
Jeffrey Mehlman, Stanford Networked Systems Group, Aaron Adcock, Stanford E.E. Department

Abstract—The ISM band is an extremely over utilized com-
munications medium. Wireless LAN technology, Bluetooth, and
landline wireless devices all make use of the ISM band. The
support vector machine is proposed as a tool for predicting
channel availability and thus using the band more efficiently.
Data processing, feature extraction, and results are presented.
Suggestions for future work in this area are also presented.

Index Terms—Wireless communications, Machine learning,
Support vector machine

I. INTRODUCTION

TODAY, wireless communications are an integral part of
our daily lives. Depending upon the form and type of

communication (e.g. cellular, wireless internet, etc.), wireless
protocols use different bands of the radio spectrum. Unlike
cellular applications, wireless internet protocols (WiFi 802.11)
use the unlicensed Industrial, Scientific, and Medical (ISM)
bands to communicate.

Because it is unlicensed and thus free for use (subject to
some basic rules), the ISM wireless spectrum in the 2.4-
2.5GHz band is an extremely over-utilized communications
resource. Wireless LAN technology, landline wireless tele-
phones, microwave ovens, Bluetooth peripherals, and other
devices generate both communications traffic and interference
in this band. We contend that there are repetitive patterns over
short timescales in these bands which can be used to predict
the channel state in the near-term future.

As examples of patternistic channel users, we highlight
the function of microwave ovens (as dumb interferers) and
the 802.11 Media Access Control (MAC) Protocol (as an
intelligent user). Microwave ovens generate RF energy in
the 2.4-2.5GHz band during portions of the 60Hz AC power
waveform. Aside from the initial event of the microwave
turning on and the final event of the microwave turning off, the
oven RF-energy generation follows a periodic 60Hz activity.
On the other hand, the 802.11 MAC protocol provides a
simplistic probabilility mechanism for user channel access
where a user tries to access the channel in a randomly chosen
10-20µs time slot [2]. If a user attempts to access the channel
and it is busy, it “backs off” and waits another random period
of time before trying again. In a busy channel, if the user fails
in consecutive attempts, it will wait longer and longer periods
of time to access the channel. The number of users and their
traffic demands have serious impacts on the likelihood of the
channel being utilized at any given time. Unfortunately, this
probability model is complex due to channel variation, random
traffic patterns and the number of users, and the specific
backoff algorithms used. An analytic approach to finding this
time-varying probability distribution is difficult at best.

Machine learning algorithms which provide reliable predic-
tion of future channel availability would have implications

Fig. 1. ISM Band Time Domain Sample (6ms)

for a number of ubiquitous technologies as well as next-
generation products like cognitive radio. For current protocols
like 802.11 WiFi, a channel prediction mechanism could allow
users to better select time slots for transmission at lower risk
of interference, bringing more energy efficient communication
and better overall use of the channel. In the future, new tech-
nologies will make use of already licensed bands by only using
them when it does not interfere with the primary, licensed
user. This is generally referred to as cognitive radio [1]. For
future cognitive radio protocols, predicting channel freedom
to ensure that they do not interfere with the primary user is of
the utmost importance [3]. These secondary users of licensed
channels, as well as users of the ISM bands, would benefit
greatly from a robust channel utilization prediction model. It
would allow them to make better use of the spectrum, picking
the right time in which to attempt transmission. Unfortunately,
since these protocols can not communicate directly with the
other users in the band, we must find alternative, passive
methods with which to predict channel usage. In this project,
we attempt to create a prediction model using only observed
signal measurements at the physical layer (PHY).

Using machine learning techniques, this project aims to
utilize signal measurements at the physical layer of wireless
ISM band to predict the state of the channel in the near
future. We have found no prior research using this approach at
the physical layer. In Section II, we review our methodology
for this experiment, including data collection, preprocessing,
and feature selection. Additionally, we review our supervised
machine learning algorithm, making use of the support vector
machine (SVM). In Section III, we train and test our algorithm
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trying a variety of different parameters on portions of a
600ms data sample and provide results. In Section IV we
review our results from this experiment, as well as some
interesting findings. Throughout the project a number of issues
with using a SVM for this application and the size of the
collected data were encountered. Some of these issues are
highlighted in the paper. Though the methods of this paper
require significant computational performance and thus are
not feasible for implementation in a wireless communication
device, they do yield promising directions for future work.

II. METHODOLOGY

In this section, we review the methods used in this project.
Beginning with live channel measurement, we highlight meth-
ods and considerations for our data needs. Next, we review
data preprocessing and feature selection for our learning
model. Lastly, we highlight our chosen machine learning
algorithm, the support vector machine (SVM), as well as some
parametric decisions for this algorithm.

A. Data Acquisition

In order to test our hypothesis, we require a large set
of live channel measurements over the entire 100MHz ISM
band. Instead of attempting to build large sets of convincing
simulation data of wireless traffic, we decided it would be
better to obtain live channel measurements. The Stanford
Networked Systems Group (SNSG) has access to a RUSK
Channel Sounder, the appropriate piece of equipment for
collecting this type of data. We collected a 320MHz-wide set
of baseband data, centered at 2.45GHz. We took two data
samples from Bytes Cafe. The first contained approximately
6ms of raw signals and the second an additional 600ms sample.
The 6ms sample is shown in Figure 1 above and was used for
initial algorithm testing. The larger data sample was 400MB in
size, while the smaller sample was only 4MB. The number of
samples is deceptive as the number of time samples is not as
important as the number of packets observed. Because of this,
and computational considerations, the data was decimated to
obtain a more reasonable data set. Because each WiFi packet
can be hundreds of microseconds long, the 6ms sample does
not include enough packets for anything other than cursory
testing. Using scripts provided by RUSK, the channel sounder
data files can then be converted into MATLAB .mat files
containing the raw data and measurement parameters. With the
raw data from the sample sets in hand, we can begin extracting
features for our prediction algorithm.

B. Data Preprocessing

The chosen feature set often determines whether or not
a learning algorithm is effective. In this case, the raw data
contains a huge amount of uninteresting information and
noise from the channel. To counteract this, features need to
be extracted that are useful for predicting future availability
of channels. To select the features, we again note that the
most ubiqituous user of the ISM band is 802.11 WiFi, which
subdivides the ISM band into smaller frequency channels. In

Fig. 2. ISM Channels (http://www.moonblinkwifi.com/2point4freq.cfm)

fact, every ISM-band protocol known to the authors uses only
some smaller subchannel of the ISM band. Thus, we make the
obvious choice to move our data into the frequency domain
using a Fast Fourier Transform (FFT), and then subdivide the
FFT into smaller frequency subchannels. At this point, we also
remove the 220MHz of additional spectrum collected with the
RUSK channel sounder, and keep only the 100MHz band (2.4-
2.5GHz) of interest. Channel access, in the frequency or time
domain, is determined by a power threshold for that band.

As shown in Figure 2, The 802.11 family of protocols
splits the ISM band into 11 overlapping 20MHz channels,
with center frequencies spaced 5MHz apart. Each WiFi Access
Point (AP) operates on one of these bands. In a large campus,
each AP is instructed to use orthogonal bands, thus channels
1, 6, and 11 are the bands most often utilized. Since channel
availability is essentially a function of the average power in a
channel, features representing the power in the each channel
of interest are the most obvious to extract. To calculate the
FFT, more than one time domain data point is required. We
slide a time-window of length T = 2n over our set of raw
time measurements, and calculate an FFT for each window.
The sliding window is stepped by some fraction of T leaving
us with a spectrogram (a set of frequency measurements over
time) of the original channel measurements.

Since the length of an FFT is the same as the length of
the time window used, the number of FFT samples is much
larger than the number of WiFi ISM channels. To further
reduce our feature space, we average the FFT samples into 20
bins of 5Mhz over the ISM band. Next, we found that these
channel power measurements contained a significant amount
of noise from random wireless channel fading and background
interference. This made it difficult to set any clear decision
boundary for whether or not a packet was in progress. As
such, we needed a filtering algorithm which would preserve
sharp packet transitions while reducing signal variation due to
high frequency noise.

For each frequency channel-time series, we utilized total
variation regularization (TVR) de-noising), which is specifi-
cally designed to remove noise while preserving large sharp
transitions. To denoise a time-series x ∈ Rn with TVR, we
solve a modified TVR optimization problem

min
x̂
|| log(x)− x̂||2 + λ

n−1∑
i=1

|x̂i+1 − x̂i| (1)
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Fig. 3. Noisy and De-noised power-time series (ISM 5Mhz channel = 8)

where x̂ is the de-noised signal estimate and the parameter
λ controls the relative penalty for signal variation. Since
interference and changes in signal to noise ratio (SNR) are
typically only interesting over orders of magnitude, using the
log power on each channel seems a natural choice.

An example of the resulting denoised power-time series for
an ISM 5MHz (frequency bin number 8) is shown in Figure
3. In the upper plot, the average power over time for a 5MHz
channel is shown. In the lower plot, TVR is applied to this
same time series to remove noise while preserving packet
transitions. The dotted red line shows our cutoff for deciding
whether or not a packet transmission is in progress, which
gives the label for our supervised learning algorithm. This is
a much cleaner decision boundary in the lower plot, and gives
more consistent positive/negative labels for the data set.

C. Feature Extraction

Within each channel, we contend that channel usage will
exhibit patterns over time, as a function of the number of users,
their traffic demands, the state of the channel interference,
etc. This hypothesis regarding patternistic use is at the core
of this research effort. We must extract features which clearly
represent these patterns, and allow us to accurately predict
future patterns.

1) Raw Feature Vectors: Our first attempt at building a
feature vector for a single channel involved a simple approach:
looking at a set of previous power levels for that channel. Thus,
each (label, feature vector) pair for a data point at time t would
consist of

• A label indicating whether or not a packet transmission
occurred at time step t+ τ, τ >= 1, in the future. Note:
a time step is approximately 16µs.

• A feature vector consisting of n+1 previous power level
samples (from t-n to t).

Unfortunately, the packet patterns we are interested in occur
over relatively long time scales (tens of milliseconds), while
individual packets occur over much shorter ones (hundreds of
microseconds). In order to capture individual packets as well
as the large scale patterns, the feature vectors would have to
be very long. Additionally, these feature vectors would include
significant amounts of useless information. We refer to this
approach as the ‘raw’ feature vector.

Fig. 4. Transition Feature Vector Extraction

2) Transition Feature Vectors: To reduce the dimension-
ality of the feature vectors and to focus on packet patterns,
we developed a new approach. In this case, the (label,feature
vector) pair for a time step t consisted of

• A label indicating whether or not a packet transmission
occurs at some time step t+ τ, τ >= 1, in the future

• One feature with the current power level at time t
• Additional features containing time elapsed since the last
NPT “packet transitions”

Packet transitions are defined as the times where a packet
starts or ends. The number of previous transitions we consider,
NPT , effectively determines how far back we look in the
packet history for the current sample, while the current power
level determines whether or not a given feature vector fi
occurs during a packet or not. Extraction of a ‘packet with
3-transitions’ feature vector is illustrated in Figure 4.

3) Prediction Distance τ : The parameter τ is an important
design consideration. Ideally, we would like to be able to
predict channel utilization at relatively distant times in the
future. With this capability, a user could make improved
decisions about the likelihood of succesful channel access.
It stands to reason that the performance of our prediction
algorithm should also become worse as we attempt to predict
further into the future.

4) Miscellaneous: During the course of the project, several
other methods for feature extraction were tried. For many
applications, if the channel is open, it can be used immediately
(this would NOT be true in the case of cognitive radio). As
such, one of the variants on the methods proposed above
involved restricting the data to just the times when the channel
was being used. In this case, the attempt was to predict when
a transition would occur. Initial attempts at implementing this
were slightly more complicated and did not give improved
performance over the method outlined above. This case is
mentioned as it emphasizes that the transitions are more
interesting than the time spent within a packet or in channel
dead-time.

D. Application of Machine Learning

The problem that needs to be solved on each channel is a
binary classification problem with input data in <n+1 for the
raw feature vectors, and data in <NPT+1, where NPT + 1 is
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FV Length FV Selection Predict Steps Ahead SVM ’C’ Value Channel Training Error Test Error
(# of Transitions) (train-test)

10 Contiguous, First 70% 1 10000 (8-8) 0 0.3324
10 Contiguous, First 70% 10 10000 (8-8) 0.1656 0.5821
40 Contiguous, First 70% 10 10000 (8-8) 0.1022 0.46
10 Random, 40% 1 10000 (8-8) 0.0020 0.0061
2 Random, 40% 10 10000 (8-8) 0.2101 0.2339

10 Random, 40% 10 1000 (8-8) 0.2218 0.2583
10 Random, 40% 10 10000 (8-8) 0.2203 0.2373
10 Random, 40% 100 10000 (8-8) 0.2186 0.2625
10 Random, 40% 10 10000 (8-2) 0.1624 0.4408
20 Random, 40% 10 10000 (8-8) 0.2370 0.2328

100 Random, 40% 10 10000 (8-8) 0.2323 0.2745
1000 Random, 70% 10 10000 (8-8) 0.2198 0.2909

TABLE I
SVM CLASSIFICATION RESULTS

the number of time-since-transition features we look at, plus
the current power level. Since the patterns we are attempting
to classify are quite complicated, and there are no prior results
directly studying these patterns, we attempted to classify the
data using a common and flexible approach: the SVM. We
began with a linear kernel, but expected that the linear kernel
would not be optimal. As such, we also tested the Gaussian
kernel and the polynomial kernel, since they were easy to
implement and are widely used. The Gaussian kernel generally
had the best performance, and was used for the tests discussed
in the results section.

We form the SVM dual optimization problem with consid-
erations for using different kernels, where

max
α

1Tα− 1

2
αT diag(y)Kdiag(y)α

s.t αi ≤ C, αi ≥ 0

αT y = 0

generates the optimal decision boundary.
We note at this point that the C parameter, which effectively

determines how much we penalize incorrect labelings, is
chosen to be very large for this application (C >1000). This
is due to the fact that there tend to be large dead-times in
some of the channel measurements, where no packets are
transmitted, and small C values led to a skew towards ‘no
packet’ labelings (see figure 5, top plot). If the number of 0-
label samples outweighs the number of 1-label samples by a
large factor, small C values leads to the algorithm treating a
significant portion of 1-labels as outliers and misclassifying
them.

After preparing transition feature vectors, we consider two
train/test classification cases:

1) Select a contiguous subset of feature vectors from the
beginning of a time series, and then test on the latter half
of that series. We refer to this as contiguous training
selection.

2) Select a random subset of feature vectors from the entire
series, and then test on the remaining portion of the
series. We refer to this as random training selection

In the first case, the goal was to show a causal classification
ability, i.e. the SVM could be trained earlier in time, and then

the results used later in time with good results. We expected
the traffic patterns to remain the same over two time periods in
close proximity. Due to findings discussed in Section III, the
second case with random subset of samples was introduced.
This random subset better represents the patterns found over
the entire time series because it comes from the entire time
series. If the second type of train/test subset selection works
better, it would indicate that, given a set of training samples
which represent all patterns found over the entire time series,
the SVM is capable of predicting channel utilization in the
future. A set such as this would need to be constructed from
samples coming from a large variety of wireless traffic patterns
and situations.

III. RESULTS

A. Raw Feature Vectors

We first consider classification of the raw feature vectors
using an SVM. This optimization yields a trivial result, where
if τ , the future-prediction distance, is relatively small many
of the feature vectors contain power measurements that fall
within the same packet as the label. In this case, the SVM
essentially guesses that “if the input is high, it will continue
to remain high,” and vice versa. If an input feature vector
represents a transition from high power to low power (or
vice versa), the SVM takes the former half of the transition
- high power - and guesses that the output will continue to
remain high. If τ is very large and the algorithm tries to look
more distantly into the future, the SVM is less successful with
training and entirely unable to classify a test set (greater than
50% error). This is because the raw features do not contain
enough of the packet history, and the information they do
contain is obscured by unimportant features, to make anything
other than very near term predictions.

If the feature vectors were significantly longer, it is possible
that they would catch multiple packet transitions and then
begin to classify based upon long-term patterns, but this
would require a very large number of features and thus an
extremely large training set. Additionally, a great majority of
these ‘features’ would not have any direct relationship with
future prediction of packets, and thus would be innefficient
for training the classification algorithm. It is clear that this
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Fig. 5. SVM Output: Tracking but not Classifying

approach is not tenable for packet traffic pattern matching.
We do not consider this type of feature vector any further.

B. Transition Feature Vectors

In Table 1, we summarize results for a number of runs
with transition feature fectures, including SVM training across
a number of parameters, with both contiguous and random
subset training selection. The transition feature model clearly
performs better for predicting future channel usage than the
raw feature model. This model begins to take into account the
length of time that the channel has been in the current state
and the length of previous packets/dead time. This results in
an SVM output that could be used as a probability (by fitting a
sigmoid to the output of the training set) of the channel being
available in τ time steps.

1) Contiguous Training Selection vs Random Training Se-
lection: As shown in the table, the contiguous training set
selection does not perform well for predicting future channels
use beyond the next time sample, even when the test set and
training set come from the same channel data. This means that
simply setting up a program that re-optimizes the SVM using
recent channel data will not achieve the performance desired.
There is however, some hope here as well. In figure 5, we see
that the SVM does in fact track packet transitions. During a
long dead period, the output of the SVM begins to rise towards
the classification boundary but does not reach it. If we make
use of a probabilistic output extension to the SVM and then
augment it with Markov forward recursions, it is possible that
our results would improve. This is an avenue for future work.

Additionally, random training sample selection from the
entire data set gives much better performance. This is because
the training set now contains samples very similar to the
samples in the test set. This method cannot be used in practice
as a wireless device needs to be able to operate causally. This
result does suggest that a training set, with enough samples and
features, would have enough predictive power for to be useful
in many applications. Unfortunately, the size of training set
required was computationally beyond our ability to use and,
as can be seen from Table 1, one channel of data is not enough
data to make accurate predictions on a different channel.

In more closely examining the SVM results with random
training, we find that only 10% of the training set (which
is in turn only 40% of our sample set for a given channel)
are support vectors. From the KKT conditions, we know that
alpha values between the bounds (0 and C) are associated
with support vectors. This means that only 4% of the total
feature vector set is needed to provide 80% test accuracy.
In the future, we plan to investigate more deeply if there is
special meaning or importance to that 4% of vectors, or if
they are just randomly chosen vectors that happen to satisfy
the optimization objective in each run of the SVM. If there
are common characteristics of support vectors, we may be able
to train an SVM algorithm (or some other channel utilization
prediction algorithm, for that matter) on only these types of
vectors. This also may lead to a more robust solution across
many different channels, and the ability to identify proper
training data subsets for all channel patterns.

IV. CONCLUSIONS

The application of a SVM to predict future channel use
from physical layer measurements was studied. The time
domain data had to be taken into the frequency domain
using sliding window and a FFT. This allowed individual
channels of interest to be used as training and test data.
Total variation regulation smoothing was used to remove noise
while preserving the sharp packet transitions present in the
data. Even after splitting the data into channels and denoising,
additional feature extraction was needed to obtain manageable
feature vectors. The performance of the algorithm was not as
good as desired. Though the algorithm worked for predicting
channel use on the same channel as the training set, it failed
to achieve reasonable performance on dissimilar channels. To
get good results, the training set had to have samples with
very similar features as those in the test set, as seen in the
superior performance of the randomly selected training sets
as compared to the time-contiguous training sets. While this
conclusion seems obvious, it does suggest that a large training
set with a variety of traffic pattern sample vectors might
achieve reasonable performance. Also, the behavior of the
SVM output suggests that a probabilistic model, in conjuction
with such a training set, would be able to give improved
predictions of the length of the current packet or dead time.
Future work with an SVM approach would involve finding
new features and trying additional kernels. Also, building a
training set of appropriate size and content would determine
the effectiveness of the SVM for this task. Other future work
would include finding appropriate statistical models (beyond
using just the SVM output values) to assign probabilities to
different channels or time slots that represent the potential
availability of that channel/time for use by the device.
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