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1. Introduction

Google Reader is a web-based content aggregator. Users can subscribe to content
sources that interest them, such as blogs and news sites, and read the content in
one central place. Users can also interact with the content in many ways: explicitly
indicate they liked it, share with friends, post a comment, visit the source website
or follow a link embedded in the content.

In this report, we explore two orthogonal recommendation problems that arise
naturally from this setting. In the first problem we attempt to predict, given a
content source and an unpublished news item in it, whether subscribers of that
source will like the item. Using this information, Google Reader can advise content
authors what kind of posts their readers enjoy.

The second problem we explore is interesting items discovery. We would like to
provide users with personal recommendations of items they might like from streams
they are not subscribed to.

2. Data model and terminology

We denote by S the set of all news streams users are subscribed to. Let I =
{I(1), I(2), . . . , I(m)} denote the set of all the content items of the streams in S. For
each content item I(k) we store (in a Bigtable [1]) its title, body, author name, time
published, and a back-reference to the stream S ∈ S the item originated from.

Each user U ∈ U has a set SU ⊂ S of streams he is subscribed. For simplicity,
in this report, we do not distinguish between the various ways a user may interact
with an item. When a user performs any interaction with an item (clicking, sharing,
emailing) we say that a user U ∈ U liked an item I ∈ I. In our system, the
collection of items continuously grows as new content is being crawled. From item
recommendation perspective, it is desirable to prefer recommending recent items.

3. Predicting item popularity

3.1. Problem statement. For a fixed stream S ∈ S, presented with items I =
{I(1), . . . , I(m)} of S, and y(1), . . . , y(m) indicating the number of users who liked
the corresponding item, predict whether an unpublished item I will be popular if
published on S.

To pose this problem as a classification problem, we consider an item popular if
the number of users who liked it is significantly more than average. Formally, if µ
and σ are the mean and standard deviation of the y(i)’s, then an item is k−popular
if more than µ+ kσ users liked it, for some parameter k.
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3.2. Naive Bayes approach. I have experimented mainly with the popular blog
LifeHacker (http://www.lifehacker.com). The data set included 6334 items which
were randomly split in the ratio 90% : 10% train to test. To reduce the number of
features, each word has been stemmed and words that appeared in less than 0.3%
of the documents have been omitted. On this input, the Multivariate Naive Bayes
algorithm has been applied.

3.3. Results. As k increases, less items are considered popular and hence the al-
gorithm may do better by merely guessing that an item is not popular, therefore it
is useful to consider the false positives and the false negatives separately. Setting
k = 2 has been observed as an optimal point where the number of likes is signifi-
cantly larger than average, hence the separation is meaningful, and still there were
140 popular items in the training set out of 5683 items.

The test set had 19 popular items and 632 non-popular items. Naive Bayes
correctly classified 6 out of the 19 popular items and 580 of the non-popular items.

3.4. Conclusion. The success rate of the Naive Bayes approach for this problem
is not satisfying as it missed 13 out of 19 of the popular items and yielded 8% of
false positives. The terms that appeared to have high correlation with popularity
appeared fairly random: mediawiki, wordpress, gizmo, bot, logon. Terms that have
been highly correlated to non-popular items were: $0, bookmarket, coupon, opera,
sale and tree.

Looking closer at the data, it appears that it is difficult a problem to predict
item popularity based on intrinsic features. Very often two items that use similar
words will vary a lot by popularity, for instance when one item announces a hot new
product when it has just been released, while the other one reviews it few weeks
after.

Perhaps this problem could be compared to the well-studied problem of predict-
ing whether a song will become a hit. [5] suggests that algorithms based on intrinsic
features (acoustic and lyrics, for instance) only do slightly better than a random
classifier. In [7], the authors claim that the popularity of a song is not predictable
beyond random using state-of-the-art machine learning algorithms.

4. Item recommendation

4.1. Problem Statement. Presented with a set of documents I = {I(1), . . . , I(m)},
a set of users U = {U (1), . . . , U (n)}, their subscriptions and liked items, and given
a specific user U , recommend K items that the user might be interested in reading.

Given the scale of operation at Google, the algorithm has to be able to provide
recommendations in an instant for any user. The recommendations have to be
recalculated several times a day to keep the users interested.

4.2. Our approach. Given the results of the previous section, we would like the
recommendation algorithm to be content agnostic and rely only on social signals.
In addition, many popular items contain very few words or just embed an image or
a video and therefore it is difficult to extract the right features from the content.

Our approach is to restrict the search space for recommended items to streams
that are similar to the streams the user is currently subscribed to. The intuition
behind this is that in most cases, users subscribe to a stream after they have read
a part of its content via other means (on the content’s source website) and their
subscription is a ’vote’ for their interest in the topic of that stream. Therefore, it
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makes sense to examine similar streams which the user is not subscribed to and
look in them for items the user may enjoy. The simplest way to find interesting
content in this new set of streams is to take only k-popular items from each of those
streams. Although this does not take into account the user’s own preferences at
the item level, this approach gives surprisingly good results.

4.3. Finding similar streams using MinHash. For a stream S ∈ S, let US ⊂ U
denote the set of users subscribed to this streams. Given two streams, S1 and S2,
we use the Jaccard coefficient s(S1, S2) to measure their similarity:

s(S1, S2) =
|US1 ∩ US2 |
|US1 ∪ US2 |

The intuition for this choice is that if two streams have a large overlap in their
subscribers, they are likely to be related. For a fixed stream S we would like to
find the streams that are most similar to it. Due to the large number of stream
pairs, a clustering algorithm such as k-means is impractical and instead we use a
probabilistic clustering approach called MinHash [6].

The algorithm starts by randomly choosing p ∈ N permutations of the set of all
users U . Let fi : {1, . . . , |U|} → U denote the i-th chosen permutation. For each
i ∈ {1, . . . , p}, we define the hash function hi : S → N by hi(S) = mink{fi(k) ∈ Us}.
It is a well-known fact[2] that the probability that two streams are mapped by hi to
the same value equals their Jaccard similarity. For completeness, we include here
its proof.

Claim. Pr(hi(S1) = hi(S2)) = s(S1, S2).

Proof.

Pr(hi(S1) = hi(S2)) =
∑

u∈US1∩US2

Pr(fi(hi(S1)) = u and fi(hi(S2) = u)

The event (fi(hi(S1)) = u and fi(hi(S2) = u) occurs only when the permutation fi

assigns u to a position left of all elements in U1 ∪ U2. Since each element u has an
equal chance to be the leftmost element in the permutation restricted to U1 ∪ U2,
the probability in the right hand side is 1

|U1∪U2| . Since this quantity is independent
of u the claim follows. �

Using the hash functions hi, we map each stream S to a cluster (h1(S), . . . , hp(S)) ∈
Np. The probability that two streams end up in the same cluster is s(S1, S2)p. In-
creasing the value of p creates more clusters where the expected average similarity
in each cluster is higher.

In practice, instead of choosing random permutations fi of U over millions of
users and implementing hi, we only choose p random 64-bit unsigned integers ri
to be used as a seed and let hi(s) = minu∈US

Hash(ri, u), where Hash is a fixed
hash function that returns a 64-bit unsigned integer. We think of Hash(ri, u) as
the position of u in the i-th permutation.

To alleviate the problem that the clusters become smaller as we increase p (re-
sulting in less recommendation opportunities), we repeat this process q times. The
end result is that each stream belongs to q clusters, where each cluster is uniquely
identified by p numbers.

As noted in [3] this construction is easy to implement efficiently in the MapRe-
duce [4] model, where a cluster of machines processes the dataset in parallel. In
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the map phase, each worker is iterating over a subset of the streams and for each
steams it outputs q key-value pairs where each key is a cluster id (p numbers) and
the value is a stream identifier. The data is then partitioned by the value of the key,
and each partition is then sorted by the key. In the reduce phase, each worker scans
through the key-value pairs ordered by key (which is the cluster id) and writes a
mapping from a cluster id to the set of streams that it contains. The mapping is
stored in Bigtable for efficient look-ups later. For this project, I experimented with
p ∈ {2, 3} and q = 15.

4.4. Membership table. For each user u ∈ U , in order to find clusters of interest,
we would like to be able to find the set of all clusters that contain a stream that
the user is subscribed to. Fortunately, this can also be implemented efficiently in
a MapReduce which is based on the output of the previous MapReduce (and the
user’s subscriptions data). This MapReduce outputs a mapping that maps each
user to a list of (cluster, score) pairs where the score is the number of streams
in the cluster the user is subscribed to divided by the size of the cluster. High
score indicates that the user is subscribed to several streams from this cluster, and
therefore the cluster represents a topic the user is likely to care about.

4.5. Generating recommendations. In order to generate recommendations for
a user u, we obtain the set of clusters the user is a member of, along with their
scores, from the membership table. Next, for each cluster we issue look-up requests
to the cluster table to obtain the list of streams in this cluster. These requests
occur in parallel. Finally, we issue a request to a Google Reader’s backend server
providing it with the set of streams we obtained, and get in return a ranked list of
content items sorted by popularity originating from those streams (this per-stream
data is precalculated).

4.6. Measuring recommendations quality. As this system is not currently
available to the general public, I was only able to get feedback from a limited
number of users. In general, it appears that most of the recommendations are very
targeted at the user (topics are very close to topics of interest). At a second itera-
tion I was able to improve the overall quality by pruning streams with less than 100
subscribers from the clustering algorithm. This resulted in a higher concentration
of extremely popular items in the recommendation mix.

A strong indication that a user liked a recommendation is whether he inter-
acted with the recommended item. The method I would use to get a quantitative
evaluation of this recommendation system is to compare it to different algorithms.
Whenever recommendations are requested for a user, a recommendation algorithm
can be chosen at random, and we can keep track whether the recommended items
were interacted with.

5. Conclusions

In the first part of this project I experimented with content-aware approaches in
an attempt to predict the popularity of unpublished items. Having obtained poor
classification results, I manually examined the data and concluded that popular
items do not necessarily have different word distribution than less popular items.
The reason for their popularity seem to be originating from new ideas or news
conveyed on the same general topic of the stream, and hence the keywords are
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indistinguishable from non-popular posts. That is to say, it is not the words; it is
what they communicate.

The second part of the project was more successful and some of the recommen-
dations it generated were actually useful. Although the recommendation algorithm
is simple and is not based on a probabilistic model, the results look promising.
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