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Intuition is a library for classifying and transforming audio based on a number of different 

learning algorithms, supervised and unsupervised, as well as a client of that library which utilizes it for 

real-time audio processing.  The client was built as a final project for Music 256A (Music, Computing, 

and Design), so I will not discuss it at length in this paper; rather, I will focus on the library and the 

learning algorithms it employs.  The library provides functionality to classify audio files using logistic 

regression; to find centroids of perceptual features in an audio file using k-means clustering; and to set 

parameters for audio production “plugins” (equalizers, compressors, etc.) in real time using locally 

weighted linear regression.  It also allows users to “mix and match” these algorithms in ways that are 

relevant to audio production.  I will discuss each of these aspects of the library's functionality 

separately.

First, however, it will be useful to discuss the framework which the library uses for audio 

processing.  Intuition is written in C++, and leverages a number of open source libraries for dealing 

with audio data at low levels.  Audio files are accessed using libsndfile (http://www.mega-

nerd.com/libsndfile/), and features are extracted from raw audio using libxtract 

(http://libxtract.sourceforge.net/) for perceptual features, and FFTW (http://www.fftw.org/) for spectral 

content.  Intuition also provides an abstraction for transforming audio using arbitrary LADSPA plugins 

(http://www.ladspa.org).  A large number of LADSPA plugins are freely available, with a wide range of 

functionality – everything from simple spectral filters to vinyl emulators and elaborate reverbs.  Each 

plugin defines a set of parameters which can be modified to change its effect on audio.  Audio data is 

abstracted via the samples class, which allows audio features to be lazily computed and cached.  The 

abstract feature class is extended to represent a particular type of audio feature, and the library's 
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learning algorithms generally accept collections of feature instances on construction, which they 

then use to extract training data from samples objects which are provided to them.  This design 

allows features to be defined generically; the library implements wrappers to libxtract to extract a 

number of perceptual (for example, smoothness, rolloff, flatness, spectral skewness) and non-

perceptual (for example, variance and average deviation) from audio, and then the learning algorithms 

can be applied to arbitrary collections of these features.

The feature_value_set class provides an abstraction for k-means clustering of audio data 

with respect to some set of features.  The class accepts a set of features at construction, the user adds 

training data in the form of audio samples, and then the class computes the centroids for those samples 

using k-means clustering.  Clustering can be employed to extract feature values which “represent” a 

collection of audio files – I will discuss later how this is employed by the library's regression algorithm.

The classifier class allows users to perform multinomial logistic regression to classify 

audio.  Again, a set of features are specified at construction, and the user provides training data in the 

form of samples instances and associated labels.  We can then compute parameters for the regression 

by optimizing the log-likelihood for our training set, and then use the parameters to classify new audio. 

This can be used for genre classification – the user specifies a collection of features which they feel are 

relevant to distinguish genres, and then a number of samples from different genres.  The success of the 

algorithm is strongly dependent on feature selection.

The regression class abstracts the most complex of the employed learning algorithms 

implemented by the library – performing locally weighted logistic regression to determine parameters 

for LADSPA plugins that transform sound in desired ways.  The user specifies a collection of features 

to use for training data, a collection of LADSPA plugins to use for processing input, and a set of 

“target” features which they wish new audio to have.  These target features are specified as a 

feature_value_set instance – the idea is that the user can extract feature centroids from a song 



or collection of songs that she likes with respect to some perceptual feature (if she likes, for example, 

the flatness of a Johnny cash song), and then train LADSPA plugins to take input data and output 

something which shares the specified features.  Training data is specified as audio samples, and then 

the regression instance extracts the desired input features from those samples, and finds the 

optimal LADSPA parameters to make those samples sound like the target output with respect to each 

centroid in the feature_value_set (here the optimal parameters are found “manually”; the 

method for finding optimal parameters is discussed below).  The regression instance stores the 

training point as a (input features, plugin parameters) point, along with a label representing the target-

feature centroid which could be best matched by the plugins (internally these labels are managed by a 

classifier instance).  Then, given new input data, the regression computes the input 

parameters for that data, uses multinomial logistic regression to decide which target-feature centroid to 

try to approximate (that is, it predicts the centroid which it will be able to best approximate), and 

performs locally weighted logistic regression using the optimal values it discovered for that centroid. 

The selection of plugin parameters given new data happens in real time, and the client written for 

Music 256A provides an interface for receiving audio from other applications (using JACK, 

http://jackaudio.org) and transforming it to match the desired target features.

To compute optimal values for LADSPA plugins for training data, we wish to minimize the 

function:
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Here there are n  target features, y
i   represents value the ith feature given inputs   to the 

LADSPA plugin, and y
i   represents the desired value of the ith target feature.  This function is poorly 

behaved in general with respect to optima, since y
i   is a complex function of the LADSPA 

parameters; simple gradient descent therefore performs poorly.  However, we can't just search the entire 
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space of plugin parameters for the optimal set of values, since this space can be very large.  Instead, we 

take the approach of generating a large number of random points in the parameter-space for the plugins, 

choosing the one which gives the smallest value for J, and then performing gradient descent with that 

parameter choice as an initial set of values.  We approximate the partial gradient with respect to each 

parameter by varying that parameter slightly and recomputing J for the new set of parameters; by doing 

this for each dimension of the parameter space, we can obtain an approximate total gradient for the 

function, and use this to perform the descent.

As mentioned, this project was created somewhat in conjunction with my Music 256A project 

for this quarter.  Professor Ge Wang offered a lot of great insight with respect to the existing libraries 

available for low-level audio processing, and the scope of the project as it pertains to practical 

applications.


