

Controller design for a wall landing airplane

Alexis Lussier Desbiens, Etienne Le Grand
{alexisld,legrand}@stanford.edu

December 11, 2009

Abstract – Plane perching on a wire has been
demonstrated with success in laboratory
conditions by [Cory & Tedrake, 2008]. The
present paper focuses on designing a
controller for a small wall landing glider. We
use a simulator and a reinforcement learning
algorithm in a coarsely discretized state-space
to design an optimal control for the landing.
Analysis of this policy allows us to deduce a
simpler closed loop controller that is robust to
variations in initial speed and that only relies
on pitch and pitch rate measurement. A
controller of that class is now being
implemented on the real airplane.

Problem Description
The Biomimetics & Dextrous Manipulation

Laboratory (BDML) at Stanford has been
working on allowing perching on vertical
surfaces for small UAVs. The maneuver usually
goes like this: the plane flies toward the wall at
cruise speed (10-14 m/s), detects the wall at 6m,
pitches up to 90 degrees to rapidly decrease its
speed by increase drag and touches down at
about 1-3 m/s. A specially designed suspension
then absorbs the impact and allows the micro-
spines (claws) to engage the wall. When properly
executed, this maneuver is quite robust, always
maintains some forward speed (and thus
controllability) and the suspension provides a
large region of velocities and orientations at
which touchdown is possible. This envelope of
velocities and orientations is defined as:

smysmxpitch /]1,2[,/]3,0[],110,45[
Unfortunately, the current maneuver is

sensitive to the initial airspeed of the plane. For
the same elevator deflection, the faster the plane

goes the larger the pitching moment created will
be. The previous feedforward controller was only
tuned for a specific airspeed and going faster
meant doing a looping, while going slower meant
not pitching up enough and crashing onto the
wall. Although it would be possible to sense the
airspeed by adding a sensor, this would add
weight to an already heavy system.

To solve that problem, we first developed a
controller able to cope with a wide range of initial
speeds using reinforcement learning to design an
optimal feedback control (full states controller) on
a simulation model of our airplane. Second, we
used this simulator to evaluate the initial flying
conditions at which the RL controller can
successfully bring the plane in the allowable
touchdown envelope. Third, we observed the
optimal trajectories and deduced a simple
controller that is robust to variation of initial
airspeed and only uses the sensors currently on
the airplane.

Simulator
The simulation model of the glider, inspired

by work from [Cory & Tedrake, 2008], had
already been developed at the BDML for a glider.
This model considers the wing and elevator as flat
plates and thus, the lift and drag coefficient can be
expressed as a function of the angle of attack (α):

)(sin2)cos()sin(2 DL CC
A simple propeller model has been added to

simulate the prop-wash on the control surfaces
and the variable thrust with respect to flying speed
during normal flight. The thrust of the propeller
can be expressed with a simple approximated
relationship:

gincovTTT min10

Where T0 is the static thrust and T1 is a
negative coefficient that reduces the thrust as the
plane velocity increases. Given the thrust of the
airplane, it is possible to use the propeller disk
theory to calculate the prop-wash on the control
surfaces:

2
min

2
ginco

disk
out v

A

T
v

Where ρ is the air density and diskA is the

propeller disk area. Note that although the thrust
was added to the model, the plane was flown as a
glider for the work presented in this paper.

RL Algorithm
Like in [Cory & Tedrake, 2008], we

formulate our problem as an infinite-horizon
optimal feedback control problem. Our system
has a 6 dimensional state space

),,,,,(yxyxS and a space of

actions),(TqA e with eq being the elevator

command and T the throttle command. For each
state s and each command a, the simulator gives
a transition function '),,(stasz . Our controller
has to output)(* sa such that if))((*)(tsata
during the maneuver, the plane will arrive close
to the goal),,,,,(ggggggg yxyxs . In our

case, we define sg as (10m, 0m, 1m/s, -0.5m/s,
90deg, 0deg/s). In order to achieve this control,
we define recursively a cost function J with

)),()min(()(max0 JssQsssJ g
T

g

)))),((),((min)(1 aszJsJsJ i
Aa

i

Where
),,,,,(QQQQQQdiagQ yxyx

characterizes the cost of being off the goal in
each direction. Note that we make sure that

0J grows rapidly in the x direction so that the

airplane reaches the other optimal touchdown
conditions as it touches the wall.

 By discretizing the state space, we use a value
iteration algorithm to make J converge to *J . In
order to be computationally tractable, we only
use 10 bins in each dimension. The convergence
is accelerated by the use of an upper

bound 0J and a wise choice of the scanning

direction. Instead of discretizing the time, we
define a transition),(asz as the trajectory of the
plane between the state s and the moment when
the plane crosses one hyperplane of the
discretized space, as shown on the figure 1 in a 2
dimensional case. Also, we use the fact that the
transitions don’t depend on the coordinates x and
y when the discretization step is constant on those
axis. Hence, only 510 different simulations are
actually computed to find the whole set),(asz in
the case of a glider.

The optimal control is obtained by
))),((*(minarg)(* aszJsa

Aa

Because of the coarse discretization, we cannot
be sure that this is a near-optimal control. In order
to validate it, we feed it back into the simulator
along with several different initial states.

Thanks to an optimized algorithm, we were
able to run the value iteration algorithm on the 106
states in about 30 seconds. Several discretizations
(up to 107 states) and cost function initializations
have been implemented, all leading to slightly
different trajectories. The results presented below
come from the standard discretization of 10 bins
in each direction with a cost function that was
judged suitable for the needs of landing on a wall.

RL Optimal Trajectories
Figure 2 illustrates the results from using the

RL controller in our simulator for initial velocities
between 10 (red) and 14 m/s (dark blue) on a
glider. On this figure, we can see that at the lower
initial velocities the plane pitches up at a slower
rate. It also doesn’t pitch up all the way to 90

Fig 1. Transition bounds, 2 dimensional case

Discretized state space
of dimension 2

Transition

State s’ after transition
Discretized states used
to interpolate J(s’)

Initial (discretized) state

Simulated trajectory

degrees in order to maintain some lift and reach
the wall, but pitches up enough to allow the
suspension to contact the wall in a proper state.
At higher initial velocities, the airplane rapidly
pitches up to 90 degrees to shed some airspeed
before touchdown. For the initial velocities
tested, the RL generated trajectories reach the
wall with vx ≈ 3 m/s, vy ≈ -0.5 m/s and a pitch
between 45 and 60 degrees.

The control input on the elevator for these

different trajectories is illustrated on figure 3. We
can see that most control inputs initially kick the
elevator to 45 degrees to initiate the pitch up
maneuver, and then maintain the elevator to 25-
40 degrees to sustain the rotation before dropping
back to -20 to 20 degrees to slow down the
rotation of the airplane.

One interesting characteristic of these
trajectories, as we can see on figure 4, is that
they maintain a constant pitch rate from t=0.1
second up to the point when the desired
maximum pitch is reached. Furthermore,

although the pitch rate is constant for a specific
trajectory, it varies according to the initial speed:
when the initial velocity is higher, the glider
pitches up faster in order to complete the
maneuver in a shorter amount of time.

Although the RL showed us good trajectories

and controller input for a range of initial speeds,
this control scheme is difficult to implement on
the real airplane for two main reasons: the look-up
table for the controller contains 106 entries and the
airplane doesn’t have a full knowledge of its
states. Although it might be possible to

Fig 3. RL generated control

Fig 4. Pitch angle during the landing

Fig 2. - Trajectories obtained with the RL control policy for different initial speeds

approximate the controller look-up table by a
lower dimension function, it would be hard to
add enough sensors without getting excessively
heavy. On the current version of the airplane,
only attitude and acceleration measurements are
readily available. The distance from the wall is
briefly known as the sensor has a maximum
range of 7m and becomes useless as the plane
pitches up to more than 45 degrees (the
ultrasound not being reflected anymore).

Simple Controller
To design a simple controller that will only

rely on the measurements available on the
airplane, it is required to change the dependence
of the desired pitch rate value on the initial
velocities to something that is related to the
initial velocity and that can be measured on the
airplane. One way to do this is to initially use a
short step function on the elevator and measure
the change in angular velocity.

As we said before, the moment created (and
thus the angular acceleration) depends on the
airspeed over the control surface. As the airplane
only has rate gyros, measuring acceleration
would require differentiation and we preferred to
use the change in angular velocity (Δω) as a
measure of the airspeed.

As shown on figure 5, when the optimal pitch
trajectories θ(t) are normalized by Δω, the
trajectories collapse to a single trajectory with
various final pitch exit points related to the
measured Δω. Thus, a simple controller can be
characterized by:
1. Flying toward the wall until detection (at

6m)
2. Commanding an elevator step output of 45

degrees during about 30 ms and measure the
change in angular velocity (Δω).
3. Tracking the θ(t)/Δω optimal trajectory as

found through RL (and fine tuned on the real
system) with a PD (Proportional-Derivative)
controller.
4. Stop the tracking and maintain a small

angular velocity once the desired pitch angle is

reached (according to the Δω measurement).

The result of this algorithm can be seen on

figure 6 which shows that a simple PD controller
can easily maintain the pitch rate constant during
the maneuver and bring the airplane to the desired
pitch angle. The overshoot observed represents a
tradeoff with a fast rise time and doesn’t critically
affect the performances.

Fig 5. Normalized pitch angles

Fig 6. Angular velocities with the simple
controller

Fig 7. Simulated trajectories of the plane with the simple controller

Figure 7 shows the resulting trajectories
generated with this controller. We can see that
each landing is successful and quite similar to the
trajectories created with the RL algorithm. The
simple controller only requires a little amount of
memory, uses sensors that are already onboard
and has only a few parameters, allowing us to
fine tune the trajectories using physical intuition.

Conclusion
In this paper, we presented a solution for the

control of a wall landing airplane. Using a
simulator, we used a value iteration algorithm to
make an infinite horizon cost function converge
in a coarsely discretized space. Implementation
of several discretizations and cost function
initializations allowed us to obtain excellent
landings. One of them let us deduce a simple
controller that achieves quality landings for
different initial speeds in the simulator.

Although the simple control algorithm
describe in this paper is working in simulation,
two main issues still need to be investigated
before implementing this controller on the
airplane: the low frequency and discrete nature of
the onboard controller (20Hz) and the low
bandwidth of the elevator servo (10-15Hz). Even
if both of these reveal to be significantly
affecting the behavior of the controller, it is easy
to imagine a control law that chooses a
feedforward elevator displacement based on the
observed Δω.

References
- Cory, R. and Tedrake, R., Experiments in

Fixed-Wing UAV Perching, Proceedings of the
AIAA Guidance, Navigation, and Control
Conference, AIAA, 2008.

- Lussier Desbiens, A. and Cutkosky, M. R.
Landing and Perching on Vertical Surfaces with
Microspines for Small Unmanned Air Vehicles
(UAVs), Journal of Intelligent and Robotic
Systems, 22 Oct. 2009.

- Lussier Desbiens, A. and Asbeck, A. and
Cutkosky, M. R., Scansorial Landing and
Perching, Proc. 14th International Symposium on
Robotics Research, September 2009, Lucerne,
Switzerland.

