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Abstract – Plane perching on a wire has been 
demonstrated with success in laboratory 
conditions by [Cory & Tedrake, 2008]. The 
present paper focuses on designing a 
controller for a small wall landing glider. We 
use a simulator and a reinforcement learning 
algorithm in a coarsely discretized state-space 
to design an optimal control for the landing. 
Analysis of this policy allows us to deduce a 
simpler closed loop controller that is robust to 
variations in initial speed and that only relies 
on pitch and pitch rate measurement. A 
controller of that class is now being 
implemented on the real airplane. 

Problem Description 
The Biomimetics & Dextrous Manipulation 

Laboratory (BDML) at Stanford has been 
working on allowing perching on vertical 
surfaces for small UAVs. The maneuver usually 
goes like this: the plane flies toward the wall at 
cruise speed (10-14 m/s), detects the wall at 6m, 
pitches up to 90 degrees to rapidly decrease its 
speed by increase drag and touches down at 
about 1-3 m/s. A specially designed suspension 
then absorbs the impact and allows the micro-
spines (claws) to engage the wall. When properly 
executed, this maneuver is quite robust, always 
maintains some forward speed (and thus 
controllability) and the suspension provides a 
large region of velocities and orientations at 
which touchdown is possible. This envelope of 
velocities and orientations is defined as:  
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Unfortunately, the current maneuver is 

sensitive to the initial airspeed of the plane. For 
the same elevator deflection, the faster the plane 

goes the larger the pitching moment created will 
be. The previous feedforward controller was only 
tuned for a specific airspeed and going faster 
meant doing a looping, while going slower meant 
not pitching up enough and crashing onto the 
wall. Although it would be possible to sense the 
airspeed by adding a sensor, this would add 
weight to an already heavy system.   

To solve that problem, we first developed a 
controller able to cope with a wide range of initial 
speeds using reinforcement learning to design an 
optimal feedback control (full states controller) on 
a simulation model of our airplane. Second, we 
used this simulator to evaluate the initial flying 
conditions at which the RL controller can 
successfully bring the plane in the allowable 
touchdown envelope. Third, we observed the 
optimal trajectories and deduced a simple 
controller that is robust to variation of initial 
airspeed and only uses the sensors currently on 
the airplane.  

Simulator 
The simulation model of the glider, inspired 

by work from [Cory & Tedrake, 2008], had 
already been developed at the BDML for a glider. 
This model considers the wing and elevator as flat 
plates and thus, the lift and drag coefficient can be 
expressed as a function of the angle of attack (α):  
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A simple propeller model has been added to 

simulate the prop-wash on the control surfaces 
and the variable thrust with respect to flying speed 
during normal flight. The thrust of the propeller 
can be expressed with a simple approximated 
relationship:  
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Where T0 is the static thrust and T1 is a 
negative coefficient that reduces the thrust as the 
plane velocity increases. Given the thrust of the 
airplane, it is possible to use the propeller disk 
theory to calculate the prop-wash on the control 
surfaces:  
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Where ρ is the air density and diskA  is the 

propeller disk area. Note that although the thrust 
was added to the model, the plane was flown as a 
glider for the work presented in this paper.  

RL Algorithm 
Like in [Cory & Tedrake, 2008], we 

formulate our problem as an infinite-horizon 
optimal feedback control problem. Our system 
has a 6 dimensional state space 
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actions  ),( TqA e  with eq being the elevator 

command and T the throttle command. For each 
state s and each command a, the simulator gives 
a transition function '),,( stasz  . Our controller 
has to output )(* sa  such that if ))((*)( tsata   
during the maneuver, the plane will arrive close 
to the goal ),,,,,( ggggggg yxyxs   . In our 

case, we define sg as (10m, 0m, 1m/s, -0.5m/s, 
90deg, 0deg/s). In order to achieve this control, 
we define recursively a cost function J with  
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characterizes the cost of being off the goal in 
each direction. Note that we make sure that 

0J grows rapidly in the x direction so that the 

airplane reaches the other optimal touchdown 
conditions as it touches the wall.  

  By discretizing the state space, we use a value 
iteration algorithm to make J converge to *J . In 
order to be computationally tractable, we only 
use 10 bins in each dimension. The convergence 
is accelerated by the use of an upper 

bound 0J and a wise choice of the scanning 

direction. Instead of discretizing the time, we 
define a transition ),( asz as the trajectory of the 
plane between the state s and the moment when 
the plane crosses one hyperplane of the 
discretized space, as shown on the figure 1 in a 2 
dimensional case. Also, we use the fact that the 
transitions don’t depend on the coordinates x and 
y when the discretization step is constant on those 
axis. Hence, only 510  different simulations are 
actually computed to find the whole set ),( asz  in 
the case of a glider. 

 

The optimal control is obtained by 
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Because of the coarse discretization, we cannot 
be sure that this is a near-optimal control. In order 
to validate it, we feed it back into the simulator 
along with several different initial states. 

Thanks to an optimized algorithm, we were 
able to run the value iteration algorithm on the 106 
states in about 30 seconds. Several discretizations  
(up to 107 states) and cost function initializations 
have been implemented, all leading to slightly 
different trajectories. The results presented below 
come from the standard discretization of 10 bins 
in each direction with a cost function that was 
judged suitable for the needs of landing on a wall. 

RL Optimal Trajectories 
Figure 2 illustrates the results from using the 

RL controller in our simulator for initial velocities 
between 10 (red) and 14 m/s (dark blue) on a 
glider. On this figure, we can see that at the lower 
initial velocities the plane pitches up at a slower 
rate. It also doesn’t pitch up all the way to 90 

Fig 1. Transition bounds, 2 dimensional case 
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degrees in order to maintain some lift and reach 
the wall, but pitches up enough to allow the 
suspension to contact the wall in a proper state.  
At higher initial velocities, the airplane rapidly 
pitches up to 90 degrees to shed some airspeed 
before touchdown. For the initial velocities 
tested, the RL generated trajectories reach the 
wall with vx ≈ 3 m/s, vy ≈ -0.5 m/s and a pitch 
between 45 and 60 degrees.  

 
The control input on the elevator for these 

different trajectories is illustrated on figure 3. We 
can see that most control inputs initially kick the 
elevator to 45 degrees to initiate the pitch up 
maneuver, and then maintain the elevator to 25-
40 degrees to sustain the rotation before dropping 
back to -20 to 20 degrees to slow down the 
rotation of the airplane.  

One interesting characteristic of these 
trajectories, as we can see on figure 4, is that 
they maintain a constant pitch rate from t=0.1 
second up to the point when the desired 
maximum pitch is reached. Furthermore, 

although the pitch rate is constant for a specific 
trajectory, it varies according to the initial speed: 
when the initial velocity is higher, the glider 
pitches up faster in order to complete the 
maneuver in a shorter amount of time.  

 

 

 
Although the RL showed us good trajectories 

and controller input for a range of initial speeds, 
this control scheme is difficult to implement on 
the real airplane for two main reasons: the look-up 
table for the controller contains 106 entries and the 
airplane doesn’t have a full knowledge of its 
states. Although it might be possible to 

Fig 3. RL generated control 

Fig 4. Pitch angle during the landing 

Fig 2. - Trajectories obtained with the RL control policy for different initial speeds 



 

 

approximate the controller look-up table by a 
lower dimension function, it would be hard to 
add enough sensors without getting excessively 
heavy. On the current version of the airplane, 
only attitude and acceleration measurements are 
readily available. The distance from the wall is 
briefly known as the sensor has a maximum 
range of 7m and becomes useless as the plane 
pitches up to more than 45 degrees (the 
ultrasound not being reflected anymore).  

Simple Controller 
To design a simple controller that will only 

rely on the measurements available on the 
airplane, it is required to change the dependence 
of the desired pitch rate value on the initial 
velocities to something that is related to the 
initial velocity and that can be measured on the 
airplane. One way to do this is to initially use a 
short step function on the elevator and measure 
the change in angular velocity.  

As we said before, the moment created (and 
thus the angular acceleration) depends on the 
airspeed over the control surface. As the airplane 
only has rate gyros, measuring acceleration 
would require differentiation and we preferred to 
use the change in angular velocity (Δω) as a 
measure of the airspeed.  

As shown on figure 5, when the optimal pitch 
trajectories θ(t) are normalized by Δω, the 
trajectories collapse to a single trajectory with 
various final pitch exit points related to the 
measured Δω. Thus, a simple controller can be 
characterized by:  
1. Flying toward the wall until detection (at 

6m) 
2. Commanding an elevator step output of 45 

degrees during about 30 ms and measure the 
change in angular velocity (Δω).  
3. Tracking the θ(t)/Δω optimal trajectory as 

found through RL (and fine tuned on the real 
system) with a PD (Proportional-Derivative) 
controller. 
4.  Stop the tracking and maintain a small 

angular velocity once the desired pitch angle is 

reached (according to the Δω measurement).  

 

 
The result of this algorithm can be seen on 

figure 6 which shows that a simple PD controller 
can easily maintain the pitch rate constant during 
the maneuver and bring the airplane to the desired 
pitch angle. The overshoot observed represents a 
tradeoff with a fast rise time and doesn’t critically 
affect the performances.   

 

 

 

Fig 5. Normalized pitch angles 

Fig 6. Angular velocities with the simple 
controller 



 

 

Fig 7. Simulated trajectories of the plane with the simple controller 

Figure 7 shows the resulting trajectories 
generated with this controller. We can see that 
each landing is successful and quite similar to the 
trajectories created with the RL algorithm. The 
simple controller only requires a little amount of 
memory, uses sensors that are already onboard 
and has only a few parameters, allowing us to 
fine tune the trajectories using physical intuition.  

Conclusion 
In this paper, we presented a solution for the 

control of a wall landing airplane. Using a 
simulator, we used a value iteration algorithm to 
make an infinite horizon cost function converge 
in a coarsely discretized space. Implementation 
of several discretizations and cost function 
initializations allowed us to obtain excellent 
landings. One of them let us deduce a simple 
controller that achieves quality landings for 
different initial speeds in the simulator.  

Although the simple control algorithm 
describe in this paper is working in simulation, 
two main issues still need to be investigated 
before implementing this controller on the 
airplane: the low frequency and discrete nature of 
the onboard controller (20Hz) and the low 
bandwidth of the elevator servo (10-15Hz). Even 
if both of these reveal to be significantly 
affecting the behavior of the controller, it is easy 
to imagine a control law that chooses a 
feedforward elevator displacement based on the 
observed Δω.   
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