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1 Introduction

Well testing is a crucial stage in the decision of
setting up new wells on oil field. Decision makers
rely on the metrics to evaluate the candidate wells’
potential. One important metric is permeability,
measuring the ability of porous material to trans-
mit fluids. High permeability often leads to high
yielding.

In a conventional well test, the well is controlled
to produce at a constant flow rate, and the pres-
sure is measured for a couple of hours (Figure 1).
This pressure curve will be used to interpret the
reservoir parameters, including the permeability k

and initial pressure Pi. To interpret the pressure
curve, a radial flow with infinite boundary model is
utilized, whose mathematical solution may be sim-
ply written in the Equation 1. Key parameters in
Equation 1 are: pwf , the measured bottom hole
pressure, Pi, the initial pressure; q, the constant
flow rate; k, the reservoir permeability. Tradition-
ally the permeability may be interpreted by com-
paring the observed pressure curve with the calcu-
lated overlay template (Figure 2).

pwf = Pi −
qBµ

k
(log t + C) (1)

Nowadays, newly introduced Permanent Down-
hole Gauge (PDG), is widely used. PDG can mea-
sure both the pressure and varied flow rate for a
long duration (Figure 3). However, current well
test remains the conventional approach, interpret-
ing only on a piece of pressure curve corresponding
to a constant flow rate. Obviously, this method
wastes most data and the resulting interpretation
is not convincing.

This study tries to use machine learning ap-
proach to develop a method that is able to make
an interpretation on a modern well test by tak-
ing all measurements into account. We would like
to proceed in two steps. First, all the measured
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Figure 1: Pressure and flow rate signals from sub-
surface in a conventional well test.
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Figure 2: Pressure curves with different reservoir
permeabilities.

noisy data are used to train a machine learning
model, which gives a good prediction given any flow
rate history. Upon the completion of this step, the
reservoir parameters, which are the goal of the well
test, are actually stored in the machine learning
model. Secondly, we try to interpret the well test
result by extracting the reservoir parameters from
the learning model. Two difficulties lie in the pro-
cess: first, the current physical model is designed
for constant flow rate, which is not the case in a
modern well test; second, while in traditional well
test the flow rate is accurate, in our problem both
the flow rate and pressure are noisy.

Section 2 first discusses learning the data set by
Locally Weighted Projection Regression (LWPR)
algorithm. Section 3 discuss applying the maximize
likelihood method in a Hilbert space by defining a
transformation φ(x). Finally, Section 4 summarizes
the whole project.
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Figure 3: Pressure curves with different reservoir
permeabilities in a modern well test.

2 Locally Weighted Projec-

tion Regression

2.1 Locally Weighted Projection Re-

gression Algorithm

Locally Weighted Projection Regression (LWPR)
is an algorithm that achieves nonlinear function
approximation in high-dimensional spaces with lo-
cally weighted linear regression in each dimension
(Atkeson, Moore, & Schaal, 1997). The LWPR
algorithm is improved over the Locally Weighted
Regression (LWR) algorithm by use of a projection
process.

The workflow of LWPR is as following: (1)
Project the training data into higher-dimensional
spaces. A subset projected on each projection di-
rection will be obtained. (2) Solve a LWR system
on each subset. A linear hypothesis will be trained
on each projection direction. (3) Sum up all hy-
pothesis on all dimensions to reconstruct the hy-
pothesis in the original one-dimensional space.

2.2 LWPR in Real Time Space

First the LWPR algorithm was applied to a
synthetic pressure generated from constant flow
rate without noise. In cases with constant flow
rates(Figure 4 & 5), LWPR works very well.

When the flow rate is not constant, the pres-
sure transient is no longer increasing or decreasing
monotonically. The incorrect predictions will be
more prevalent(Figure 6). The LWPR algorithm
fails when the flow rate changes quickly (Figure 7).
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Figure 4: Synthetic pressure generated from con-
stant flow rate without noise.
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Figure 5: Synthetic pressure generated from con-
stant flow rate with noise.

pwf =

∫ t

0

q′ (τ) [p (t − τ) + S] dτ (2)

Currently we suspect this suffers from two rea-
sons: first is the relatively slow learning rate of the
algorithm, second is that the pressure is a result of
convolution of previous flow rates (Horne, 1995),
as described in Equation 2. To solve this problem,
one choice is to convert the data set into a space
where the pressures are independent of each other.
There actually is such a space where the pressures
are deconvolved, namely the Laplace space.

2.3 LWPR in Laplace Space

To apply the machine learning algorithm in Laplace
space, the workflow is natural and straight-forward:
(1) Transform the data set into Laplace space nu-
merically. (2) Apply the machine learning method
(LWPR) in Laplace space. Obtain the prediction
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Figure 6: Synthetic pressure generated from
changed flow rate with noise.
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Figure 7: Synthetic pressure generated from fast
changing flow rate without noise.

in Laplace space. (3) Invert the prediction numeri-
cally from Laplace space back into time space. Fig-
ure 8 shows the result in Laplace space. From the
figure, it is clear that the method works well in
Laplace space.

The prediction in the Laplace space was then
converted into real time space, as shown in Fig-
ure 9. The overall trend is captured well. Two
zoom-in views are also provided in Figure 10 and
Figure 11.

Although the LWPR regression obtains good
prediction in the Laplace space, the performance
is slow. There is heavy computation in the process
of transforming and inverting the data between the
real time space and the Laplace time space, which
cost more than 95% CPU time. Therefore, a roll-
back is required: how can we train the machine
learning algorithm in the real time space but void
the problem of data dependency? Section 3 will
proposes another learning algorithm to answer this
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Figure 8: Synthetic pressure with noise in Laplace
space.
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Figure 9: Synthetic pressure with noise in real time
space.

question.

3 Maximize Likelihood in

Hilbert Space

3.1 Super Position

First we need to understand the physical essence
of the pressure transient when the flow rates are
varied. When the flow rates are varied, the pres-
sure transients are formed by a physical process
named Super Position. The pressure transients
caused by varied flow rates are actually a combina-
tion of multiple pressure transients each of which
is corresponding to a constant flow rate. Figure 12
demonstrates this process.

The super position enables us to re-write the con-
trol equation of the pressure transient in a modern
well test, as shown in Equation 3.
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Figure 10: Synthetic pressure with noise in real
time space: zoom-in view 1.
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Figure 11: Synthetic pressure with noise in real
time space: zoom-in view 2.

p
(i)
wf = Pi −

i−1
∑

j=1

(qj − qj−1)Bµ

k
(log (ti − tj) + C)

(3)
With Equation 3, Section 3.2 solves the problem
by learning in a selected Hilbert space.

3.2 Application in Hilbert Space

With Equation 3, we may map each input vector
x(i) = [1; q(i); t(i)]T by a function φ, shown in Equa-
tion 4.

φ
(

x(i)
)

=







1
∑i−1

j=1

(

q(j) − q(j−1)
)

∑i−1
j=1

(

q(j) − q(j−1)
)

log
(

t(i) − t(j)
)







(4)

With this mapping, the pressure transient Pwf ,

Equation 3 may be written as

P
(i)
wf = θT φ

(

x(i)
)

(5)

So instead of feeding the learning algorithm
hθ(x) = θT x with data x(i), we will feed the with
vector φ

(

x(i)
)

. In this selected Hilbert space, the
learning hypothesis becomes

hθ

(

φ
(

x(i)
))

= θT φ
(

x(i)
)

(6)

So to train the learning algorithm, we just
need to estimate θ by stochastic gradient descent
method. After the hypothesis θ is obtained, we may
give a pressure transient prediction with any given
flow rate history by Equation 5. Besides accurate
prediction, we would also like to interpret the reser-
voir parameters like Pi and k. It is actually very
straight forward after θ is obtained. Comparing
with Equation 3, we can get







Pi = θ0

C = θ1

θ2

k = Bµ
θ2

(7)

After training the learning hypothesis with all
φ
(

x(i)
)

, the reservoir parameters obtained are
listed in Table 1. The results are very close to the
true values of the reservoir parameters (Figure 14).
The trend of the prediction is very good, but the
curve is oscillating because the flow rate history is
noisy. Section 3.3 improves the training process by
imposing a pre-processing on the noisy flow rates.

Table 1: Parameter Interpretation from Machine

Learning

Parameters True Value Learning Value

Pi 5000 4989

k 20 20.89

3.3 Smooth Flow Rate by Edge Pre-

serving Filter

We would like to smooth the flow rate, because the
prediction would be corrupted by the noise in flow
rate. However, simple smoothing techniques can
blur the edges at transition positions, and intro-
duce error in all the data that follows. As a result,
we come up with the idea to use edge-preserving
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filters widely used in computer vision community.
Specifically, we choose to use bi-lateral filter, which
in essence is described by

W (x; xi) = exp

[

−

(

(f(x) − f(xi))
2

σ2
f

+
‖x − xi‖

2

σ2
x

)]

(8)

The weight of data x to xi combines both magni-
tude and spatial differences, in contrast to normal
filters taking into account only spatial information.

By smoothing the flow rate with Edge Preserving
Filter first and then applying the machine learning
algorithm discussed in Section 3.2, the results are
much better, shown in Figure 15 and Table 2.

Table 2: Parameter Interpretation from Machine

Learning with Pre-processing on flow rates

Parameters True Value Learning Value

Pi 5000 4997

k 20 20.07

4 Summary

In this work, we first tried LWPR in real time and
Laplace space to learn the underlying model of well-
testing data. The prohibitive computation cost
lead us to re-consider the problem, and come up
with the idea to apply superposition to re-organize
the data and put them into a unified linear model.
Based on this model, gradient descent is used to
learn the model parameters, which reveals the de-
sired physical metrics of the well. Finally we uti-
lize edge-preserving filter to smooth flow rate and
achieve further improved accuracy.
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Figure 12: A demonstration of super position:
(a) two separated constant flow and their pressure
drop, (b) the combination of the two constant flow
forms a varied flow and its corresponding pressure
drop, and (c) the varied flow rate and the corre-
sponding pressure transient when the initial pres-
sure is considered.
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Figure 13: Noisy pressure transient and noisy var-
ied flow rates from a modern well test.
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Figure 14: Pressure prediction after machine learn-
ing with noisy varied flow rates.
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Figure 15: Pressure prediction after machine learn-
ing with smoothed varied flow rates.
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