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 Music transcription is the process of recovering the pitches and timings of notes in a piece of 
music from a recording of the music. This can be accomplished by a trained human musician, but 
automated music transcription, performed entirely by computer, has been a difficult task. For this 
project, I am exploring the problem and the potential applications of machine learning therein. I have 
examined the problems reducing the effectiveness of other groups’ work on the subject and developed a 
structure for a new algorithm that can eliminate these problems. 
 
 One straightforward application of machine learning techniques to this problem was done by 
Graham Poliner and Daniel Ellis of Columbia University.1

 This paper also provides a methodology for determining the error produced by a transcription 
algorithm. It separates the music into short time frames on which it performs its predictions, and it 
matches this against an already-calculated set of data. The errors are further classified into substitutions, 
misses, and false alarms. They also suggest another error measure, involving note onset detection; this 
avoids problems associated with determining the endpoints of notes that fade out over time, as often 
happens in piano music. 

 Their approach used one-versus-all SVMs to 
train one classifier for each note; the features from the SVM were short-time Fourier transforms from a 
spectrogram. This gave them estimates of the , which they used to estimate the probability that the 
prediction is correct. This was then followed by a Hidden Markov Model application to smooth the 
results for each note over time. Both classifiers were trained on a large array of sample music. 

 
 Selecting appropriate features is crucial for note recognition. Raw audio data comes in the form 
of numbers representing the amplitude of the sound wave at various points in time. (This is the format of 
.WAV files; .MP3 files have the same data, but in compressed form.) One very useful technique for 
analyzing this data is the short-time Fourier transform, or STFT. This transforms the sinusoidal data in a 
short period of time from the amplitude space to a frequency space. Furthermore, the STFT can be 
applied repeatedly to overlapping segments to form a spectrogram, which shows the strengths of each 
frequency over time. (MATLAB’s Signal Processing Toolbox provides this as a feature.) The spectrogram 
can be inverted to retrieve the original audio data; this is a guarantee that it contains enough data to 
perform transcription. 
 The output of the STFT is a series of complex numbers. The absolute values of these coordinates 
reflect the strength of the sinusoidal signal of the given frequency; the complex number’s angle in polar 
form represents the specific phase of the signal. One of my experiments regarding the spectrogram data 
involved removing the phase from this data to see if information needed to transcribe the notes would be 
lost. This involved generating a spectrogram of some sample audio data, modifying the spectrogram, 
and inverting it to retrieve the equivalent audio data. (This was accomplished with the use of a 
spectrogram inverter written by Daniel Ellis). In the resulting audio file, the original notes were clearly 
audible and distinguishable, so there is sufficient information to perform audio transcription if phase 
information is ignored. The remaining amplitude information (represented entirely by positive real 
numbers) is easier to work with and visualize. 
 One feature that is peculiar to the piano can help in transcription: the noise produced by the 
hammer when a new note is struck. This sound is clearly distinguishable from that produced by a 
vibrating string: it fades as quickly as it rises, and (more importantly) it is spread across a broad 
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spectrum of frequencies. As a sound with these properties appears at the beginning of each new note, it 
can be used to determine when new notes are struck. A simple version of this function is as follows: 
 
function hammerTimes = getHammerTimes(S,threshold)  
 
t = size(S,2);  
hammerTimes = find(sum(S(:,2:t)-S(:,1:(t-1)),1) > threshold) + 1;  
%This gives the leading edge of each hammer strike; the last one should be  
%in roughly the middle of the hammer strike.  
hammerTimes = keepLastOfEachGroup(hammerTimes); %Keeps the last of each series 
                                                %of consecutive integers 

 
 This version was tested on three different sample audio clips, two recorded by myself and one 
professionally recorded. In all three, its threshold parameter could be set to accurately list every time 
that a beat was beginning and nothing else; unfortunately, no single threshold was optimal for all three. 
It may be possible to determine the correct threshold using other features of the music. Even if the 
parameter cannot be automatically set for the piece, it is a useful input for determining the points in time 
likely to be the beginnings of notes. (The difference in total amplitude taken by itself is also a useful 
input, but this method has the advantage of narrowing the initial time frame to a single value.) 
 It would be logical that other versions of the function taking advantage of how hammer noise is 
spread across the frequency spectrum would be even more effective; however, my attempts at 
incorporating this effect have failed. Part of this may be that this particular implementation also 
incorporates the increased noise from strings, also marking the beginning of a new note. 
 
 The problem that arises with the SVM method described above is that it frequently makes 
mislabelings in which the labeled and correct notes are off by an octave or similar interval. To see why 
these intervals are difficult to distinguish, we need to consider the forms the spectrogram data takes. 
 Each note played during a timeframe contributes its own fundamental frequency, but it also 
contributes additional frequencies that are integer multiples of the fundamental. These can be seen as 
Gaussian spikes in the frequency chart. This makes it easy to distinguish individual notes based on 
which spikes are present. However, when there are multiple notes and one’s fundamental frequency is a 
multiple of the others, the spikes will overlap, hiding the second. 
 

 
The Gaussian spikes generated by one note; a second note an octave higher; and the interval containing both. 

 
 To distinguish these two cases, we need to know more about the heights of the spikes relative to 
one another and how they differ in those cases. Looking at several examples, we see that the changes of 
amplitude of each spike in a given note are predictable, even when keys are played with different 
weights. 



 
Middle C evolving in time on two different pianos. Each colored line represents a different Gaussian spike. 

 
 
 One way of incorporating this data would be to add time as a component of the SVM’s feature 
vector. Specifically, we could add to the feature vector a parameter consisting of the time since the 
beginning of the note (times some constant factor to make it more relevant in computing the distance, as 
needed). This would be easy to incorporate when training the SVMs, as this can be computed from the 
data set. (The negative samples would need to have this parameter filled in according to some 
distribution matching that of the positive samples.) The problem comes in applying the SVMs to real 
data: we no longer know what offset to use as a feature. The solution is to make use of hammer noise. If 
we have some set of times, a subset of which are the correct hammer strike times, then we can apply our 
SVM test once for each recent hammer time. A note can be considered likely to be played during a given 
time frame if it passes an SVM for any one of its likely time parameters. 
 The problem with this improvement is that its usefulness is severely restricted by its need for 
training data. As mentioned before, note variations over time are instrument-specific, so the training data 
must come from the instrument to be tested for full usefulness. Matched recordings and note data are 
only practical to acquire with synthesized instruments, and even then only with access to the original 
synthesizer. Therefore, it would be preferable to have a method that learned from the unlabeled 
recording itself. 
 
 We can envision the problem in terms of likelihood maximization under an EM approach. In this 
case, the hidden labeling is the set of notes that are played at various times with various amplitudes. A 
labeling consists of the number of note assignments along with each assigned note’s pitch, amplitude 
relative to the model’s, and timing. 
 To reduce the complexity of the problem, the E-step only tries to propose one labeling, instead of 
weighing multiple possible labelings. A solution to this problem is very difficult, but feasible. In theory, 
it could be solved by treating it as a Hidden Markov Model problem. Each timeframe has a labeling. 
Most of the transition probabilities will be zero; if one time frame has a given pitch being played, the 
next time frame can only contain that pitch being played in the subsequent time step with the same 
relative amplitude or not being played at all. When a pitch is not being played, it can either continue to 
not be played or be played with some amplitude (discretized for the purposes of the HMM). 
 A suitably optimized Viterbi-like algorithm, taking advantage of the high likelihoods of 
maintaining the status quo and of playing small numbers of notes as opposed to larger ones, might be 
able to solve this in a reasonable amount of time. I have instead pursued a different algorithm that takes 
advantage of a certain property of the notes: the lowest frequency can only be contributed by its own 
note. (Unfortunately, given my current treatment of the music, this property breaks down in the lowest 
octave or so, where the “lowest frequency” of each note is too close to distinguish. This could be 
addressed by using a broader range of spectrogram data: a larger STFT window would allow greater 
resolution at these low frequencies, at the expense of precise time measurements.) 
 



Notation: 
)(tx : Observed frequency vector of a timeframe t 
)(r

nθ : Proposed distribution of the frequency vector of note n at time r with respect to the beginning of 
the note 
ε : Distribution of background noise (half-normal distribution) 

is : Starting time of assignment i (measured in time frames) 
)(t

ia : Relative amplitude of assignment i if it is played during time t; otherwise, 0.  

in : Note (i.e., pitch) of assignment i 
)(tϕ : Predicted distribution of the frequencies at time t, given the assignments 
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results because it does not take into account the effects of destructive interference. Each note contributes 
to a given frequency some complex value representing both its amplitude and its phase; the 
contributions are added in this complex space, so they are as likely to cancel each other out as they are 
to add perfectly. 
 We can create a reasonable model for this interference if we make the assumption that one note 
has a significantly higher mean value than the others. Suppose that we have random Gaussian variables 
A and B, and we want to find the distribution of θϕ BcisAcisC += , with ϕ  and θ  uniformly and 
independently distributed. (This reflects how the waveforms are added.) Under the assumption that 

BA > , we find that this is equivalent to 22222 cos2sin)cos( BABABBAC ++=++= θθθ , 
which is closely approximated by θcosBA + . This in turn has expected value Aµ  and variance 

[ ] [ ] [ ] [ ] ( )( ) ( )BBABBAA EBEEBEBA µσσµσσθθσθ 215.042sinsin)sinvar(var 222222222 ++=++=−+=+
. Adding background noise gives variance ( ) 222 21 εσµσσ +++ BBA . Then, our estimated distribution for 

)(t
jϕ  becomes ( )








+++ ∑

≠

+−+−+−+−

mi

st
ij

st
ij

st
mj

t
m

st
mj

iimm aN )1()1(2)1()()1( 21, µσσσµ ε , where )1()(maxarg +−= ist
ij

t
i

i
am µ . 

The likelihood to maximize is ( ))(
)()()( t

f
ft

xppL t
jϕ

θθ ∏∏= . 

 Is our assumption about the relative values of A and B practical? In fact, it describes most cases, 
particularly because the parameters vary both with frequency and with time. Rarely do the curves of the 
multiple notes come close to matching; and when they do, the variance is high, so they contribute little 
doubt to the model if the m chosen is incorrect. 
 In practice, when two notes contribute 
the same frequency at the same time, this leads 
to the phenomenon of beating. This happens 
when the frequencies from the two notes are not 
quite the same. As a result, the amplitude of the 
frequency in general (its associated spike) 
oscillates over time. This produces a good 
indicator to the algorithm that the frequency is 
best explained by a high-variance combination 
of notes, rather than a single note. 

 Examples of beating as seen on a spectrogram. 
 The M-step of the algorithm assumes 
that our assignment of notes is correct and subsequently tries to maximize )(θ  by changing the values 



of . If we allow arbitrary iterated maximization this way, then we could potentially end up with note 
forms that are dissimilar from the intended notes, or from any actual notes; to prevent this, we apply a 
Bayesian prior to each nθ . (An alternative would be to allow arbitrary evolution of the θ s, then try to 
distinguish the notes coming from the resulting evolutions; but this could misclassify octaves as notes, 
for example.) 
 The prior probabilities require some knowledge about how the notes are distributed. The 
fundamental frequencies are easy to calculate, due to even tempering. The other frequencies of a given 
note are approximately the integer multiples of the fundamental. (There is a property called 
inharmonicity which causes some deviation at high multiples, but I have found it not to be a problem: it 
only applies at high frequencies which have low amplitudes anyway, and most of its effect as I observed 
it earlier vanished when I started measuring the mean of each spike, rather than the highest value.) 
Observations suggest that the relative values of successive spikes at a given time roughly follow an 
exponential decline; furthermore, this decline is in terms of the frequency, not in terms of the number of 
the spike. As mentioned before, the spikes themselves are Gaussian, with roughly equal standard 
deviations. As for decline with respect to time, previous observations have shown how this is 
unpredictable. In addition, data to approximate this is complicated to assemble because it requires inputs 
from multiple pianos as well as multiple keys. However, if the string is assumed to be an underdamped 
harmonic oscillator, then physics suggests that the amplitude over time roughly follows a power law in 
the general case. Finally, hammer noise should be included in the prior, so that the algorithm is not 
confused by otherwise unexplained noise. These observations have allowed me to construct a model for 
how to generate the prior, but as it is untested and relies on arbitrary constants, it adds no new 
information to the above. 
 
 The approach advocated here is complicated in that it takes one difficult problem and replaces it 
with two slightly less difficult problems. Nevertheless, if implemented and shown to work, this approach 
could have multiple advantages over other envisioned transcription methods. It uses minimal training 
data; it identifies how loudly notes are played, relative to one another; and it collects data on the 
instrument being analyzed. (For example, it could be used to make a synthesizer imitating a recorded 
piano.) Most importantly, it addresses the fundamental problem behind errors of octaves and similar 
intervals which plague other approaches.  
 
 Although I was ultimately unable to make productive use of the paired music data I collected for 
this project, I would like to acknowledge and thank the contributors to the Allegro and Audacity open 
source projects, whose code for handling MIDI files allowed me to collect it. 
 Of course, special thanks are due to Graham Poliner and Daniel Ellis for laying down 
groundwork for this research. 


