
A Link Availability Predictor for Wireless Sensor Networks

Haruki Oh
Stanford University

hoh@cs.stanford.edu

ABSTRACT
We present a machine learning based approach to link avail-
ability prediction to be used in low power wireless sensor net-
work routing. Accurately predicting availability of interme-
diate quality links will enable cost-efficient routing without
sacrificing reliability and stability. Our predictor performs
just slightly better than a simple predictor.

1. INTRODUCTION
In wireless sensor networks, there are unstable links that of-
fer better routing progress than stable, high-quality links.
However, most link quality estimation and routing tech-
niques have focused on identifying and utilizing consistently
high quality links for packet forwarding. Typical routing
protocols for wireless sensor networks, such as Collection
Tree Protocol (CTP)[5], select links as suggested by their
link estimator, which chooses only high quality links to achieve
better connectivity and reliable communication[4]. However,
this approach ignores links with lower connectivity, but it
might reach further into the network, potentially more closer
to the end node. Moreover, in a sparse network with low
density of nodes, there may be no high quality link avail-
able, and nodes must deal with unstable connectivity.

Studies have shown that these intermediate quality links
are highly bursty in their connectivity, meaning that the
connectivity frequently change between stable and unstable
periods. Accurately predicting the periods when the link
is stable enables wireless nodes to utilize the link without
affecting the reliability and stability of the network, and
achieves more efficient routing to the end node.

Previous work have focused on estimating the link quality
using some metrics. However, none focuses on predicting
explicitly whether the link is stable or unstable at a given
time. The main contributions of this work are (1) it predicts
whether the link is stable or not, thus not requiring any
change in the routing protocol, and (2) rather than defining a
single metric, it uses machine learning techniques to identify
patterns in successful transmissions.

The remainder of the paper is organized as follows: Section 2
discusses related work in taking advantages of intermediate
quality links. Section 3 explains the design of this machine
learning based system and how the features are selected and
generated. Section 4 discusses the evaluation of the system,
and Section 5 concludes the discussion and outlines future
work.

2. BACKGROUND AND RELATED WORK
This section describes some existing ways of taking advan-
tages of the links with intermediate quality.

2.1 Statistics of Packet Loss
While the majority of link estimators assume that individual
packet delivery and loss events are independent, and that
they follow Bernoulli distribution [11], studies have shown
that for shorter time scales, group of packet delivery may
be correlated [3, 9]. Furthermore, in the work by Becher et
al. [1], the authors concluded that any link, regardless of
quality, becomes temporarily reliable after 3-5 consecutive
packets are received over that link. These results suggest
that statistical learning techniques could be used to predict
when the link becomes reliable.

2.2 Opportune Transmission
Srinivasan et al.[10] introduced the metric, β-factor that
characterizes the bustiness of a link using Conditional Packet
Delivery Function that describes the probability of packet
delivery after n consecutive deliveries. Using β-factor, the
authors introduced opportune transmission where sending
node will pause for a period of time after a failure. This will
increase the apparent packet reception rate, reducing the
transmission cost at the expense of throughput and latency.

2.3 Opportunistic Routing
Opportunistic routing[2] uses coordination among interme-
diate quality links to increase throughput in sparse network
where links that available are all intermediate quality. Be-
cause it requires sending packets in batch and coordination
among intermediate nodes, it has a relatively high overhead
cost and communication. Our machine learning based link
availability predictor is designed so that sender node can
choose an available and stable link to send, and will not
require overhead coordination among nodes.

3. DESIGN OVERVIEW
The main task of LAP is to predict whether the next packet
will be successfully transmitted to the destination or not.
Since we do not know about the packet, such as signal
strength, until the node actually sends out, we must use pre-
vious history to predict whether the next transmission will
be successful. In this section we describe how to generate
training data (and test data) from packet traces.

3.1 Packet Traces



The packet trace obtained from Stanford Information Net-
works Group contains two files. One file contains sequence
number, sender mote ID, destination mote ID, Received
Signal Strength Indicator (RSSI), Chip Correlation Index
(CCI), and timestamp of each successful transmissions. The
other file contains sequence number (which is unrelated to
the one in the other file), mote ID, noise observed, and times-
tamp. Because noise is an interesting feature in predicting
packet delivery, we first merge the two file so that the first
file contains, in addition to packet delivery trace, the noise
observed.

Because there is no one-to-one correspondence in timestamps
of the two files, there may not be an observation of noise
level when the packet was sent. To fill in the missing noise
observations, we used locally weighted linear regression to
estimate the noise at that time. Since noise level observation
was done frequently (as frequent as packet transmission), we
believe this approach gives very good estimate of the noise
level when the packet was sent.

3.2 Estimating RSSI of Lost Packets
Because packet trace contains only records of successful trans-
missions (it does not contain any information about lost
packets), we cannot run supervised learning directly. Ini-
tially we tried using density estimation with mixture of Gaus-
sians. However this approach resulted in extremely poor
accuracy even after numerous attempts in finding the best
number of Gaussians as well as the best threshold for label-
ing.

In order to use supervised learning techniques, we must have
information about lost packets. Because wireless nodes tried
to send packets at a constant frequency, we already know
what time the transmission of the lost packet was attempted,
as well as the noise level at that time. Rusak et al. [8]
introduced an accurate way of guessing the signal power of
lost packets. Using a function that maps between signal-
to-noise ratio and packet loss rate[7], we can calculate the
distribution of lost packets at a certain signal strength.

During pre-processing, using data of packets that were de-
livered, we create a distribution of signal strength of the
packets that were lost. For each packet that was lost, we
use the time it was (supposed to be) attempted to estimate
the signal strength and the RSSI. We have the following
relation between signal strength and RSSI:

signal strength = 10 log10(10
RSSI
10 + p× 10

Noise
10 )

The parameter P is the phase difference between the signal
and the noise. (We found that the signal and noise are
most likely out-of-phase.) After guessing the signal strength
from probabilistic distribution, we use the same formula to
calculate the RSSI.

3.3 Feature Selection and Generation
With data for lost packets, we can generate the features
for supervised learning training. Because we are looking at
history to predict the future, we have a parameter N, to be
determined during training, that describes how long into the
past we consider. Since previous work[10, 1] used histories of

packet delivery, packet delivery history on that link, which
is an array of booleans, are included in the feature set. Be-
cause some links are always better than others, (some links
have near 100% connectivity; some have near 0%), mote ID
describing the destination node was also chosen as a fea-
ture. Clearly signal strength and noise level affects packet
reception, so they are included in the feature set as well.

In addition to the above, change in the above parameters
might help. For example, if the noise level was clearly rising,
it might indicate that the packet reception rate is dropping
and the next packet might be lost. To this extent, we also
chose to include the change in reception rate, signal strength,
and noise level, as the slope of the linear regression.

We have also tried the CCI(Chip Correlation Indicator, which
is related to the frequency of data corruption) and its history
but this only lowered the accuracy. The β-factor[10] did not
change the accuracy so it is not included in the final feature
set. The features for other links significantly increased the
training time, and due to time constraint, it is not included.

For training and classification, we used SVMLight[6] with
Gaussian Kernel.

4. EVALUATION
For evaluation, we used packet traces from Intel Mirage/MicaZ
testbed, on Channel 11. In this testbed, each node sends a
unicast packet to another node in a round-robin fashion, ev-
ery 15 seconds. A sequence number is generated for each
attempt to send a packet to a particular node. In total,
each node attempted to send 800 packets to another node.
We chose the first 700 as the training example and the last
100 as the test set. Since there is time-correlation involved,
we cannot just randomly split the dataset.

The parameter N, describing how much past data to look,
was determined to be 5. N=10 did not improve the perfor-
mance, and N=3 or 15 started to decrease the accuracy.

4.1 Simple Predictor
Since we did not have access to any real wireless sensornet
testbed, we built a ”simple”predictor to compare the perfor-
mance against. A ”simple” predictor will always label ”yes”
if packet reception rate (PRR) of that link is greater than
50%, and always label ”no” otherwise. This gives the theo-
retical minimum accuracy of 50% for the simple predictor.

4.2 Results
Table 1 lists the results for sending packets from node 9,
results from other nodes were similar. Some nodes, such
as node 0, was excluded from the table because it did not
exist in the network. PRR is the packet reception rate at
that node; Simple is the prediction accuracy for the sim-
ple predictor; and SVM is the prediction accuracy for SVM
predictor.

Overall SVM did about equally well as a simple predic-
tor, doing slightly better in the intermediate quality nodes.
(which are actually the important ones to make predictions
for). SVM did not perform well when the PRR is close to
100%.



Table 1: Results for Node 9
Destination PRR Simple SVM

2 0.97 0.97 0.95
3 0.2 0.8 0.81
4 0.97 0.97 0.95
5 0.97 0.97 0.95
6 0.97 0.97 0.94
7 0.97 0.97 0.95
10 0.96 0.96 0.95
11 0.87 0.87 0.87
12 0.73 0.73 0.74
13 0.99 0.99 0.96
15 0.27 0.73 0.75
16 0.9 0.9 0.89
17 1 1 0.96
18 0.47 0.53 0.59
19 0.01 0.99 0.91
20 0.84 0.84 0.84
21 0.97 0.97 0.94
24 0.8 0.8 0.8
30 0.38 0.62 0.64

This result suggest a two different predictor could be used
together. Since for high quality links, a ”simple” predictor
will do well, and for intermediate quality links, SVM seems
to do slightly better most of the time.

5. CONCLUSIONS AND FUTURE WORK
We have demonstrated that link availability prediction us-
ing machine learning techniques is reasonably accurate, with
rooms for improvement. Data from other links may be a
good feature to try as there was not enough time to run
such a long training run multiple times.

Since we were only able to test accuracy of predicting whether
the link is stable or not, it is essential to measure the end-
end path effect and performance of this predictor on a real
wireless network testbed.

6. ACKNOWLEDGMENTS
I would like to thank Prof. Philip Levis and Kannan Srini-
vasan for their advice on this project.

7. REFERENCES
[1] A. Becher, O. Landsiedal, G. Kunz, and K. Wehrle.

Towards short-term link quality estimation. Hot
Emnets 2008.

[2] S. Biswas and R. Morris. Exor: Opportunistic
multi-hop routing for wireless networks. SIGCOMM
2005.

[3] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin.
Temporal properties of low power wireless links:
modeling and implications on multi-hop routing.
MobiHoc’05.

[4] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis.
Four bit wireless link estimation. HotNets VI (2007).

[5] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. SenSys’09, 2009.

[6] T. Joachims. Making large-scale svm learning
practical. In B. SchŽlkopf, C. Burges, and A. Smola,

editors, Advances in Kernel Methods - Support Vector
Learning. MIT-Press, 1999.

[7] H. Lee, A. Cerpa, and P. Levis. Improving wireless
simulation through noise modeling. IPSN 2007.

[8] T. Rusak and P. Levis. Investigating a
physically-based signal power model for robust
wireless link simulation. MSWiM (2008).

[9] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis.
Understanding the causes of packet delivery success
and failure in dense wireless sensor networks.
SenSys’06.

[10] K. Srinivasan, M. Kazandijeva, S. Agarwal, and
P. Levis. The β-factor: Measuring wireless link
burstiness. SenSys’08.

[11] A. Woo and D. Culler. Evaluation of efficient link
reliability estimators for low-power wireless networks.
Technical Report UCB/CSD-03-1270, UC Berkeley,
2003.


