
MoViSign: A novel authentication mechanism

using mobile virtual signatures

Nikhil Handigol, Te-Yuan Huang, Gene Chi Liu

1 Introduction

Signatures are a popular means of authentication. They, ideally, are unique
to a person and, therefore, hard to copy. Two common types of signatures
are traditional “pen-on-paper” signatures and electronic signatures. Elec-
tronic signatures are done on a custom-built electronic board using a stylus.
The electronic board records information such as pressure, acceleration, and
angle of the stylus in addition to the standard signature “image”. This infor-
mation is used by a signature recognition system to differentiate authentic
signatures from fraudulent ones. Both types of signatures have their draw-
backs. While traditional “pen-on-paper” signatures are prone to forgery by
expert humans, electronic signatures require a special electronic board to
record the signature.

In this project, we design and implement a novel mechanism of authenti-
cation, called mobile virtual signature, using mobile phones. Modern mobile
phones such as the Apple iPhone and the Google G-phone are equipped with
multiple sensors including accelerometers, orientation sensors, temperature
sensors, proximity sensors, and multi-touch sensors. In our authentication
mechanism, a person authenticates by signing “in the air” with the phone.
The sensors on the phone, primarily the accelerometer and the orientation
sensor, continuously record various parameters such as position, acceleration
and angle. This information is then used by a Machine Learning program
running on the mobile phone to recognize the signature.

The authentication mechanism has several advantages. First, just like
the traditional signatures, mobile virtual signatures stay unique to each per-
son and can be changed if necessary. Second, it makes forgery hard as the
signature is made “in the air” and without producing any tangible output

1

to copy from. Third, it is hard to map the information collected by the
accelerometers back to the actual physical movement that produced the sig-
nature. Finally, the mechanism uses popular mobile phones, and hence can
be deployed on a large scale without additional cost.

We have developed a prototype of the system on the Google G-phone.
The G-phone runs the open source Android operating system which allows
for easy development of new applications and reuse of components built by
other developers.

2 System Design

We have implemented a Java application on Android to collect values from
accelerometer and orientation sensors as our training set and run an SVM-
based learning algorithm to classify authentic and non-authentic signatures.

The values from the accelerometer sensor are defined in the accelerometer
reference [1]. We record acceleration in the X, Y and Z axes, whose positive
directions are toward the right side, top, and front of the device respectively.

The values from the orientation sensor are defined in the orientation sen-
sor reference [3]. We record three values from the orientation sensor [2]:

Figure 1: Azimuth Figure 2: Pitch Figure 3: Roll

• Azimuth(Figure 1) - the angle in current reference to magnetic north,
ranges between [0. 360].

• Pitch(Figure 2) - the degree to which the device is tilted forwards or
backwards, ranges between [-180, 180].

• Roll(Figure 3) - the rotation of the device in relation to the bottom left
hand corner of the screen, ranges between [-90, 90].

2

Using this application, the user can create input samples and label them
as “authentic” or “non-authentic”. The application logs each input sample
into a file, which is then used by the machine learning algorithm to train/test
the authenticity of the input signature.

3 User Interface

Figure 4: Entering
user name.

Figure 5: Data log-
ging.

Figure 6: Train-
ing/testing the data

Figures 4, 5, and 6 show the graphical user interface (GUI) of the Mo-
ViSign system. The user begins by giving her name as the input after which
she will be presented with a “log” button. The user then signs her signature
while holding the “log” button down, and then releases the button. After
the signature logging, the user is presented with 3 options:

• Success - Use the logged data as an authentic signature to train the
system.

• Fail - Use the logged data as an non-authentic signature to train the
system.

• Test - Test the authenticity of the signature based on the training data.

3

4 Training and Evaluation

4.1 Test Data

We generated about 400 signatures, including two of our group members’
signatures. Each of the two signed for about 100 times as positive training
data, and about 200 irrelevant patterns as negative training data.

4.2 Feature Extraction

For each signature, we log the output of the accelerometer and orientation
sensor and store them in increasing time order based on timestamp. We then
divide the log data evenly into s segments (for s = 2, 4, 8, 16, 32.). For each
segment, compute the mean of accelerometer readings (in x, y, z directions,
respectively) and orientation sensor (in aziroth, pitch, roll, respectively). We
then use these six mean values as features for that particular data segment.
Thus, we have 6 ∗ s features for each signature.

4.3 Training

We use SVM with linear kernel and L1 soft margin. Our SVM is imple-
mented using CVX, a convex optimization problem solver built on MAT-
LAB (http://www.stanford.edu/ boyd/cvx/). We use C = 100 for the L1
soft margin. We use a very large C here so that the alpha values will not be
affected by L1 soft margin constraint in most cases.

4.4 Evaluation

: Our first attempt was to use Leave-one-out cross validation. As it took
too much time to train and evaluate on every single test data, we also tried
K-fold cross validation for K = 20 on larger data sets.

4.5 Experimental Results

In Table 1 and 2, we show our experimental result for two different eval-
uations: Leave-one-out and 20-Fold Cross-Validation. As we increate the
number of segmentation, the error rate also decreases as the number of fea-
tures increases as well. However, if we have too many segmentations, the

4

Table 1: Experimental Result for Leave-One-Out
Segmentation Error Rate false positive false negative

32 0.0489 0.0635 0.0303

16 0.0489 0.0476 0.0505

8 0.0578 0.0556 0.0606

4 0.0711 0.0794 0.0606

2 0.0889 0.1032 0.0707

Table 2: Experimental Result for 20-Fold Cross-Validation
Segmentation Error Rate false positive false negative

50 0.0732 0.069 0.0427

32 0.0534 0.0621 0.0427

16 0.0534 0.0621 0.0427

8 0.0687 0.0897 0.0427

4 0.0725 0.0828 0.0598

2 0.0878 0.1172 0.0513

error rate would instead increase. For example the error rate for 50 segmen-
tations in Table 2 is higher than that of 32 segmentations. This is because
two little data points inside each segmentation, and since the reading of sen-
sors are prone to the affect of noise. If we have too many segmentations, the
features are affected by noise more.

5 Related Work

Our authentication mechanism falls in the category of online signature recog-
nition. Previous work on online signature recognition [4] uses position(x, y),
pressure, and orientation of the stylus on the electronic board as the input
features. The system stores preprocessed genuine signatures captured from
each user. It then uses dynamic time warping and HMM models to com-
pute the similarity between the new input signature and the stored genuine
signatures.

MoViSign differs from the previous work in terms of both the feature-set
and the classification mechanism. MoViSign uses 3-D position, and orien-
tation based on signatures generated by hand-gestures using mobile devices.
It then uses supervised machine learning algorithm to classify signatures as
aunthentic and fake ones.

5

6 Conclusion

Mobile virtual signature is a novel and potentially useful application of mobile
phones. In this project, we designed and implemented the system using a
simple SVM-based machine learning algorithm. Our results show that the
algorithm does a good job of classifying signatures, with very low error rates.

References

[1] Android accelerometer reference. Website. http://code.google.

com/android/reference/android/hardware/SensorManager.html#

SENSOR_ACCELEROMETER.

[2] Android sensor orientation. Website. http://www.novoda.com/blog/

?p=77.

[3] Android sensor orientation reference. Website. http://code.google.

com/android/reference/android/hardware/SensorManager.html#

SENSOR_ORIENTATION.

[4] Marcos Faundez-Zanuy. On-line signature recognition based on vq-dtw.
Pattern Recognition, 40(3):981–992, 2006.

6

