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Abstract.    The goal of this work is to use machine learning to understand server performance in a SunRayTM 
client-server network.    Preliminary work shows differences between the data emitted by servers who are 
performing well versus data emitted by those that are performing poorly.    These differences emerge early in 
an operational day, and so give an opportunity to pre-emptively identify servers that will be operating in an 
abnormal manner later in the day.   The project reduces the size of the dataset by computing a covariance 
matrix between the different system variables and doing supervised and unsupervised learning in this space 
(instead of the time domain).   K-means clustering found 7 variable groups corresponding to hardware and OS 
subsystems.   Support Vector  Machine algorithm was used to classify correlation output and raw data. 

Introduction

Client-server networks require high levels of 
performance assurance to guarantee fast and 
uniform response time for all clients, applications, 
threads, and network processes operating at any 
given time.   In the SunRayTM thin client system, this 
is particularly important as nearly all application 
processing -- including graphics rendering -- occurs 
on the server and is communicated to the client in 
UDP packet streams.  In this setting,  performance 
decrements manifest in subtle ways, often appearing 
suddenly and disappearing just as quickly.   

Preliminary studies of memory, floating point 
operations, and network variables have shown that 
no single variable effectively captures the state of a 
system for the purposes of performance evaluation,    
and it is apparent that an effective characterization 
of system performance must use a multivariate 
model of system state.   

The purpose of this project is to observe and model 
server performance and to devise measures that can 
be used to classify "healthy" vs. "suspect" servers.  

A Sun internal application samples and stores data 
from the Solaris "kernel" at 10-minute intervals.  The 
10-minute samples are corrected for timestamp 
irregularities, differentiated where cummulative, 
then interpolated and smoothed.  

I.   Building a Model of Normal Behavior

A sample of Unix variables for 15 consecutive 
Wednesdays for 44 server machines was obtained.    
After procedures detailed in "Milestone" Report 
(but omitted here), we ended up with 445 server-
day datasets that we knew to be Normal, and 78 
that we knew to be Atypical. 

Covariance or multiple correlation reduces the time 
series to a single number that relates each variable 
to each of the other variables,  and so realizes a large 
reduction in size of the dataset.

A correlation matrix was formed for each of the 445 
'normal'datasets, and a randomly selected subset of 
50 were inspected visually by running the matrix 
through MATLAB's "surface" function which maps 
a value to a color.    An example surface "heat map" 
is shown in Figure 2, where data from several 
similar-looking datasets have been aggregated.  
Dark red cells correspond to high positive 
correlation; dark blue cells correspond to high 
negative correlation;  pale green cells correspond to 
zero correlation.   

After removing variables lacking non-zero data, we 
had 44 variables.   The 445 44 x 44 correlation 
matrices were subjected to k-means clustering to 
see if variables from sub-systems of the operating



system (e.g, CPU-, user-, disk-, memory-, and 
network-related variables) would cluster together.  If 
so, then we have reason to believe that  an 
automated learning algorithm will, at the very least, 
recover what we already know about the system.  In 
order to find "k" for the k-means clustering, the 
Bayesian information criterion (BIC) was found by 
running 100 iterations of each of 10 values for k 
(1-10) with random starting points.  See the 
"Milestone Report" for details.

Figure 1 shows the 44 clustered variables plotted in 2 
dimensions.   Ovals added manually to highlight 
structure, and descriptive labels derived from each 
cluster's members.   With clusters identified, the heat 
map visualization was improved by reordering the 
variables to group them by cluster.  Figure 2 shows 
the resulting aggregate heat map.

Figure 1.  Variable Clusters in 2-D Plot

II. Finding Servers with Atypical Behavior

The 43-dataset template was used as a standard to 
which all 445 datasets were compared by unraveling 
the correlation matrix into a vector and correlating 
against the template.   The distribution of resulting 
correlations looks truncated normal (see Figure 3). 

 Figure 2.  Normal Heat Map

Figure 3.   Distribution of Normal Correlations  

   Mean = 0.8827, sd = 0.0814

The same process was followed for server-day 
datasets identified as "atypical".   Figure 4 shows 
one example of an atypical heat map.    Note that 
the cluster structure is weak.   Figure 5 shows the 
distribution of correlations for datasets identified as 
atypical, against an aggregate (formed by cell-wise 
averaging) of all 78 atypical datasets.   Atypical 
datasets have low correlation with their own 
aggregate, meaning that they are heterogeneous in 
their atypicality. 

Figure 4.  An Atypical Heat Map



By contrast,  'normal' datasets are highly 
homogeneous with respect to their aggregate.

Figure 5.  Distribution of Correlations for 

Atypical Datasets against Atypical Aggregate

  Mean = 0.6998,  sd = 0.1069

III.  Using Supervised Learning to Classify 

Servers - Approach

1.  Compose a training set of m datasets, in which 
some proportion 'p' are known to come from 
"healthy" servers and some proportion (1-'p') 
come from servers visually identified as 
"suspect".   

2.  Run multiple correlation on each set.   Send the 
correlation matrices to a supervised machine 
learning algorithm (Support Vector Machine) 
using positive and negative examples identified 
from earlier steps.   Generate a classification 
output and examine the accuracy of this 
algorithm in classifying the correlation outputs.   
Use different ratios of "healthy" to "suspect" 
servers in the training set, to see how this choice 
impacts the Test Error of the classification step.    
See next Section. 

3.  Also train an SVM on the raw data instead of 
the correlation outputs.   It may be possible to 
speed up and streamline classification by 
skipping the computationally-intensive multiple 
correlation step.   

IV. Training Set Composition & Test 

Error

Intuitively, the Training Set must contain 
examples of both positive and negative cases.   

But one can ask "how many of each?"  Does the ratio of 
positive to negative traiing cases matter?   In the 
absence of knowledge about the Test Set, then a 50-50 
ratio makes sense.  But what if we have knowledge of 
the ratio in the Test Set (i.e.,  the real world)?  For 
example, in the case of "healthy" and "unhealthy" 
servers in a data center, there will always be more 
healthy servers than unhealthy ones, or at least the 
center's personnel hope so.   If we want to train an 
optimal classifier to detect a relatively small number of 
unhealthy servers in a large group of healthy ones, 
does it make sense to train the classifier on a ratio of 
positive and negative cases that matches the real-
world ratio?  Or is 50-50 best?

There is probably a straightforward mathematical 
answer to this question based on the properties of the 
SVM algorithm.   However, this author lacks the skills 
required to examine the problem from that angle and 
it is possible to test the idea empirically.   Accordingly, 
the SVM algorithm was run under a set of varying 
Training Example ratios, as shown below.   There were 
445 normal servers and 78 atypical ones in the set, 
which constitutes a ratio of about 5.7 to 1.    For the 
study, random samples were drawn from the entire set 
according to varying ratios of normal to atypical 
servers.

Normal-Atypical Ratios used were 1:1, 2:1, 3:1, 4:1, 5:1, 
and 6:1, in combinations ranging in magnitude from 
20 normal:10 atypical up to 200 normal :50 atypical.  

Multiple (50 or 100) runs were conducted for each 
ratio,  with each run being a different random sample 
from the set, and mean and standard deviation for the 
ensemble of runs were computed.   We started out 
with sets of 100 but they took a long time, so switched 
to runs of 50. 

The SVM software used for this study is the 
smo_train.m script developed in Problem Set #2 of the 
cs229 course (Autumn 2009).    Its default settings are 
0.01 for tolerance and 10 for maximum number of 
passes through the training set.   These are the values 
used for classification of correlation outputs. 



Figures 6a-e show the Test Error distributions for 
each 50- or 100-iteration run.  They are roughly 
gaussian, truncated at the low end and long-tailed 
on the high end.   Medians would give lower 
estimates of test error, but means in this case are 
more conservative and for comparisons the two 
should be equivalent.

Figures 6a-e

6a  Histogram of Normal=40, Atypical = 40 (1:1 ratio)

6b Histogram of Normal=40, Atypical = 20 (2:1 ratio) 

6c  Histogram of Normal=60, Atypical = 20 (3:1 ratio)

6d  Histogram of Normal=100, Atypical = 25 (4:1 ratio)

    6e  Histogram of Normal=80, Atypical = 15 (5:1 ratio)

Distributions from the 1:1 & 1:2 Training Set ratios 
had average stddev of 0.021 compared to 0.012 for the 
3:1-6:1 ratios, and so are more variable.   Figure 7 
shows mean Test Error wrt Training Set size, for 
various ratios.   With standard deviations of 0.01-0.02, 
most of these differences are not statistically reliable.  
But the elevation of the 1:1 & 2:1 test error may be 
real, and taking that together with the greater spread 
of the distributions, better generalization performance 
probably comes from a Training Set that mirrors the 
expected Test set's ratio of "positive" to "negative" 
cases.   NOTE - Figure 7 is an update of the plot 
shown at the Poster Session, and reflects additional 
runs of random-draw study.  "Best" test error is now 
around 3.6%.

V.  Using SVM to Classify Raw Data

So far we've done classification on the outputs of 
multiple correlation.   As shown in Figures 3 and 5 
above, the template-match distributions of Normal 
and Atypical servers are well separated (though not 
linearly separable) and our simple classifier achieved 
Test Error of about 3.6% under the best choice of 
Training Sets we could come up with.    But 
correlation takes time because at least n(n-1)/2 
correlations are needed, where n is the number of 
variables.   It is of theoretical and practical interest to 
ask whether the same classification results can be 
obtained using the raw time series data and skipping 
the correlation step.   

So we ran the same smo_train SVM algorithm on raw 
data files, by unraveling the 44-variable by 1400 
interpolated-time-sample matrix for each



  Figure 7

server-day into a long vector.   Initial trials 
indicated the default settings (tolerance 0.10 and 
max_passes 10) were giving high and variable 
Test Error, so we decreased tolerance to 0.001 and 
increased max_passes to 40 and got lower mean 
error.    But this greatly increased the time 
required to get a result, AND, upon examining 
the Test Error distributions, it became clear that 
something puzzling is going on.    Figures 8 & 9 
show the distributions using 4:1 Normal-Atypical 
Training Set ratios.    They are bimodal with spikes 
in both the 90% error range and the 10% error 
range.   Given a binary classification task, a 
random classifier would have a 50% error rate, so 
could the spike near 90% mean the classification 
is "correct" but for a sign change?    

Figure 8

Histogram of Normal = 80, Atypical = 20 (4:1 ratio)   

Figure 9

Histogram of Normal = 160, Atypical = 40 (4:1 ratio)

NOTE - The poster showed a plot of mean Test Error 
for the SVM raw data classification,  but with these 
distributions mean error is not a good measure of 
what is going on.    What IS going on?   

VI.  Fun with SVM

Linear SVM classification can also be used on datasets 
preprocessed with PCA or Cross-Correlation.  These 
methods are visualizable in a 2D space.   Figure 10 
shows Normal & Atypical servers plotted by cross-
correlation of UNIX variables users & run queue.   
Normal (green) have high magnitude (Y axis) and 
near-zero lag (X axis),  and are tightly clumped in the 
2-D space.   Atypical (red) have low magnitude and 
high variance in lag.  This dataset was linearly 
separable.   (Nice ... though the plot seems to be 
missing at least green support vector) .  In Figure 11, 
SVM uses radial basis function to cluster UNIX 
process, TCP, user, and disk. 

Figure 10! ! Figure 11

!

DISCUSSION

Normal servers have a "correlation print" that is 
distinctly different from atypical servers and the 
difference is classifiable by a simple SVM algorithm.   
However,  SVM on the raw data seemed to reversed 
the classification of about 1/3 of the Test Set.  Is this a 
property of the algorithm, the dataset, or an 
interaction of the two?  An error of this author?   If we 
can get raw-data SVM to work, then how should it be 
visualized?   Is there a 2D representation?

Correlation outputs are approximately gaussian 
distributed, so this report should have included a 
gaussian model such as discriminant analysis or factor 
analysis, and compared it with SVM in terms of 
accuracy and efficiency.   Unfortunately, time ran out.   

IT'S BEEN A GREAT CLASS!   THANKS!


