
Novel Lossy Compression Algorithms with Stacked Autoencoders

Anand Atreya and Daniel O’Shea

{aatreya, djoshea}@stanford.edu

11 December 2009

1. Introduction
1.1. Lossy compression

Lossy compression is a strategy to reduce the size of
data while maintaining the majority of its useful or
meaningful information. Though some data is lost in
the compression process, lossy compression algorithms
try to remove data that is unlikely to be considered
important by a human consumer. Given this goal,
today’s lossy compression techniques are carefully de-
signed to model human perception as closely as pos-
sible in order to maximize the amount of valuable re-
tained information for a given data compression level.
The popular JPEG image compression algorithm, for
example, is reliant upon the observation that human
visual perception is far more sensitive to low-frequency
spatial variation than high-frequency spatial variation.
Similarly, the MP3 audio compression algorithm uses
carefully-tuned psychoacoustic models to make infer-
ences about which components of a given audio stream
are most perceived by a human listener. These percep-
tual coding methods exhibit quite impressive compres-
sion results, but require a great deal of work among
psychologists, computer scientists, and engineers, and
are ineffective or even detrimental when applied in sit-
uations for which they were not designed. Using JPEG
to compress line art, for example, often yields undesir-
able results.

It is thus valuable to be able to easily develop a com-
pression method that is naturally tuned to a particular
type of data. This can be accomplished by extract-
ing statistical regularities in the data and then using
this information to compress the data. We demonstrate
that one can efficiently compress data through the care-
ful application of deep-belief networks while maintain-
ing the data’s most meaningful characteristics.

1.2. Deep learning

Deep-belief networks are a relatively new approach to
neural networks that are unique in having more than
one hidden layer (stacked autoencoders) [1]. These net-
works are typically trained one layer at a time, with a

set of sparsity constraints to minimize the number of
connections between nodes. Training networks in this
way allows one to develop hierarchical representations
while ensuring that individual layers represent mean-
ingful components of the information. With images of
human faces, for example, a deep-belief network may
contain a first layer composed of various edges, a sec-
ond layer that uses edges to form face parts, and a third
layer that uses face parts to form entire face represen-
tations. The components generated at each layer are
referred to as basis functions. Due to the sparsity con-
straints, these basis functions develop such that they
maximize the amount of information that can be rep-
resented through a minimal combination of bases.

Since the training method for these networks is de-
signed to encode data using very little information,
we believe that the encoded representation is naturally
suited for lossy compression applications.

2. Approach

2.1. Autoencoder Training

We used autoencoders, as implemented in the Stanford
Deep Network library, to perform nonlinear dimension-
ality reduction on inputs from a given dataset, and to
encode the reduced representation of each input into a
compressed version of the original. Our approach com-
bines lossy encoding via stacked autoencoders, lossy
vector quantization via k-means, and lossless Huffman
encoding.

The autoencoder is designed to represent each in-
put patch as a vector of activation values at each node.
From these activation values, the decoding stage forms
a reconstructed version of the original input patch. Ini-
tially, these reconstructed values are used to train the
autoencoder to minimize the error between input and
the reconstructed output, while a parameter is used to
ensure sparsity of the activation vector. When images
are to be compressed, the algorithm feeds the input
image into the nonlinear encoding layer and outputs
a representation of the activation vector. This activa-
tion vector is then further compressed. The decom-

1



pression algorithm feeds the decompressed activation
values into the decoding stage of the autoencoder and
returns the reconstruction. Additional autoencoders
may be nested recursively within the encoding and de-
coding layers of an outer autoencoder to apply this
methodology to the stacked autoencoder case. We an-
alyze the results of these scenarios below.

In order to generate reconstructions with adequate
fidelity, we explored appropriate parameter values for
the network architecture and training algorithm, such
as number of nodes, target sparsity, learning rate, etc.
We focused our attention primarily on the target spar-
sity parameter, exploring a range of 10 logarithmically
spaced values from 0.005 to 0.5 during the training pro-
cedure. For the two-autoencoder case, we performed a
grid search over the same range of sparsity values for
both the outer and inner autoencoder.

2.2. Vector Quantization via k-means

The next task is to efficiently encode the activation val-
ues on each node into a stream of bits that will comprise
the compressed input. One approach to this problem
is simply to serialize each activation value directly as
a floating point number. However, this is very data
inefficient. Thus, we have chosen to use k-means clus-
tering to find an ideal set of quantization values for the
real-valued activations.

Our quantization algorithm for encoding the acti-
vation vector works as follows. Once the autoencoder
has been trained using a specific sparsity parameter, we
load the trained network and sample the activation vec-
tors for N input images. We then run k-means cluster-
ing on each node independently, assigning each of the
N values into k clusters. We then encode each element
of an input image’s activation vector using the code-
book (i.e. cluster means) computed for each node. This
imposes an upper bound of 2k bits per node. The size
of the compressed representation k can be tuned as a
quality or bitrate parameter similar to parameters tun-
able in mainstream lossy compression algorithms. On
each trained autoencoder, we performed vector quan-
tization using logarithmically spaced k values from 2
through 256. For k = 256, distortion of the activa-
tion vectors due to lossy quantization is minimal. For
k = 2, the amount of distortion and the degradation of
reconstruction quality incurred depends on the sparsity
value used to train the network.

2.3. Huffman Encoding

While vector quantization attempts to find the quanti-
zation codebook to minimize squared error distortion,
cluster assignments need not be uniform, especially

when activation vectors are sparse. We therefore com-
pute the entropy of the cluster assignment histogram,
which yields the number of bits needed on average
to encode the quantized activation vector for images
drawn from the training set.

3. Results

3.1. Role of Sparsity and k Parameters

For high sparsity values, the autoencoder lightly com-
presses the inputs. In this regime, reconstruction error
is sensitive to the k parameter used in vector quantiza-
tion. Lower k values significantly distort the activation
vectors.

For low sparsity values, the autoencoder heavily
compresses the inputs. The reconstruction error is in-
sensitive to k. Activation vectors may be compressed
down to binary (k=2) vectors with no substantial loss
in quality. These binary vectors have low entropy, al-
lowing large compression ratios.

Figure 2: Amount of quantization distortion
(L2 norm between raw and quantized activation
values) induced by k-means vector quantization.

3.2. Two Autoencoder Compression

We examined the benefit on effective compression of
the use of a nested set of two autoencoders. For each
autoencoder, we independently varied the sparsity pa-
rameter as described above. We found that only the
case where the outer autoencoder has a sparsity of
0.5 actually contributed to the “frontier” of achievable
compression, shown in the final curves in Figure 3.

3.3. Comparison with JPEG and PCA

We compared our [autoencoder + vector quantization
+ Huffman encoding] scheme with two other common
algorithms: JPEG and PCA. We found that the au-
toencoder compression algorithm outperforms JPEG
in the high compression, reduced quality regime. This
likely reflects the autoencoder’s ability to learn the
statistics of the class of input images.

2



(a) Bits (b) Compression Ratio

Figure 1: Reconstruction error and size of compressed representation as (a) bit count and (b) compression
ratio. Each color represents a autoencoder trained with a particular sparsity parameter. Each point within each
curve represents a particular k value used in vector quantization.

(a) Bits (b) Compression Ratio

Figure 3: Comparison of compression curves for a single autoencoder, two stacked autoencoders, JPEG, and
PCA. Plotted is the minimum attainable reconstruction error (L2 norm) given the constraint of (a) maximum
average bits used, or (b) minimum compression ratio attained.

(a) Minimum Bits at k = 2 (b) Reconstruction Error at k = 2

Figure 4: Results of grid search over outer and inner autoencoder sparsity parameters for two autoencoder
compression. (a) Bits used in compressed representation using k = 2 for vector quantization. (b) Reconstruction
error attained using k = 2 for vector quantization.

3



For PCA, the optimal linear lossy encoding, we
found that the autoencoder algorithm consistently out-
performs at each reconstruction quality it achieves.
This likely reflects the nonlinearity present in the en-
coding/decoding layers.

4. Discussion

We have presented an alternative approach to image
compression that exploits the statistics of the data to
achieve better compression than standard algorithms
like JPEG and PCA. This improvement in perfor-
mance, however, comes at the cost of loss of generality.
Specifically, in order to benefit from the improvement
in compression ratio for a given reproduction quality,
our algorithm requires that one first train the algorithm
offline on a large collection of images from the same do-
main, and then later apply that algorithm to compress
images from the same domain. While this approach
can be expensive, it is likely preferable in cases where
one has a large amount of similar data to compress
and would benefit from a better compression ratio at
the cost of increased compression time.

In this work, we focused exclusively on the MNIST
dataset. Although we tested the algorithm on exam-
ples that were not seen during training (with identi-
cal performance, so data is not shown), we have not
yet explored the results of attempting to compress im-
ages drawn from a different domain than that on which
the network was trained. We expect that performance
would suffer significantly in this case, since the primary
reason that our algorithm performs well–that it is able
to exploit statistics of the domain data–no longer ap-
plies.

4.1. Domain Generality

Using the ngvideo datasets and pools of image patches
drawn from the Caltech 101 dataset, we can explore the
feasibility of training a domain-general image compres-
sion algorithm. We already have shown that the weight
patches trained on the ngvideo dataset extract general
image features, such as oriented edges, that are likely
features present in large classes of image domains. Us-
ing general datasets such as these, we can compare our
trained compression algorithm to other common lossy
compression algorithms. It is as yet unclear whether
we can hope to outperform existing lossy compression
algorithms like JPEG in the sense of achieving better
reconstruction quality for a given bitrate for images
drawn from any domain.

Nevertheless, the advantage of using a machine
learning approach is that we can easily tailor our com-
pression algorithm to perform optimally on a specific

training dataset, as we have done on MNIST. Using a
dataset extracted from images from a certain domain,
e.g. face images, handwritten characters, natural land-
scapes, etc., we have been able to train a compression
algorithm to exploit statistical regularities in images
characteristic of that particular domain. Because algo-
rithms like JPEG are handtuned for compressing im-
ages in a general sense, we have shown that we can
outperform JPEG for a specific domain of images, since
those images possess strong statistical regularities that
JPEG is unable to exploit.

4.2. Integrating human “error” models

The compression method described above relies upon
the fact that autoencoders are trained to minimize the
sum of squared error between the original data and
its reconstruction. However, this is not necessarily the
same error function that a human observer would use to
evaluate the quality of a reconstruction. While JPEG,
MP3, etc. were designed to maximize the amount of
useful information to a human observer, this method
takes a more indirect approach in trying to make the re-
constructed output match the input in as close a math-
ematical sense as possible. Since the mathematical er-
ror function is not necessarily the same as a human’s,
we would like to be able to incorporate what humans
value in the reconstruction.

The most direct way to accomplish this would be
to simply change the error function used by the au-
toencoder. This would require changing the gradient
descent portion of the training algorithms. For exam-
ple, the underlying principle of JPEG image compres-
sion is that humans value low frequency information
in images but tend not to notice alterations to high
frequency content. We could model this by computing
a least squared error function on blurred versions the
input and reconstruction. However, changing the error
function would require us to ensure that the new opti-
mization problem remains convex or at least tractable,
and may require fine-tuning of network architecture
and training parameters. While this approach may
prove successful, it would be advantageous to integrate
human quality assessment into the compression system
in a less tedious way.

Another simple approach is to manipulate the inputs
to the network directly so that the autoencoder would
attempt to reproduce the manipulated versions of the
original input. For example, we could low-pass filter all
input images before feeding them to the autoencoder
training algorithm.

Alternatively, we could add noise to higher frequen-
cies in the input images and ask the autoencoder to re-
produce the original images, without the added noise.

4



Such a network is referred to as a denoising autoen-
coder. Both of these strategies share the common
theme of asking the network to learn to extract features
that lie predominantly in the range of frequencies that
humans value most in the reconstruction while ignor-
ing features that depend on high frequency content.
The reasoning behind this is that once the network
uses these human-valued features to reconstruct the in-
put, the compressed representation of node activation
values will selectively encode information that humans
value most, improving the quality of the reconstruction
from a human perspective.

5. References

1. G. E. Hinton and R. R. Salakhutdinov. Reducing
the Dimensionality of Data with Neural Networks.
(28 July 2006). Science 313 (5786), 504.

2. Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe,
Honglak Lee and Andrew Y. Ng. Measuring in-
variances in deep networks. NIPS 2009.

5


