
CS229 Project: Music Search Engine

Shaoqing Xiang
xsq2003@stanford.edu

December, 2008

1. Introduction
With the abundance of digital music files on the
internet, how to efficiently and effectively find a
music piece is crucial. Conventional music search
systems utilize text information of the music,
such as the title of a song, a singer’s name, or the
lyrics of a song. In many cases, such text-based
music search tool is not sufficient. Often, a user
may remember how to sing part of a song he/she
has once heard, and wants to find the complete
piece of music on the internet, but not knowing
any other information about the music (i.e. tile,
composer name), the search can not be done with
conventional search tools. Such scenario
demands the use of a query-by-humming (QBH)
music search system.

A QBH system is a search tool that takes audio
file- often a short piece of query melody hummed
or played by the user- as the searching input, and
by comparing the inputted audio file (query) with
the music files (references) in the database, the
QBH system finds the corresponding music files,
part of which is most similar to the query sound.
Several approaches have been tried for this kind
of system in the past, and various comparing
algorithms are used, such as dynamic
programming [1], edit-distance alignment [2],
and linear alignment matching [3].

In this project, I focus on the melody comparing
part of the QBH system, and have built a melody
comparing engine based on the linear alignment
matching algorithm.

2. QBH System composition
An overview of a QBH system is shown in
Figure.1.

Figure.1 Overview of a QBH System

The system is mainly comprised of two parts,
melody transcribing engine and melody
comparing engine. The melody transcribing part
takes the user query sound wav information
(often in the format of .WAV file), divide it into
many (often 1024) segments, and do
time-frequency domain transformation to get the
frequency information of each segment. Then the
transcribing engine determines the pitch of sound
each segment represents, and finally transcribes
the whole piece of query sound waveform to the
score or the melody contour it represents (a
melody contour is the mathematical
representation of a music score series, and it
records the sound pitch value at any position of a
song).

Several past CS229 projects have worked on
transcription of audio files, so in this project, I
focus myself on the melody comparing engine.

mailto:xsq2003@stanford.edu

The task of the melody comparing engine is to
find out how similar the melody contour of the
query music is to the contour of each music piece
in the database, and then returns one or several
music pieces that have the highest similarity
score in the database.

Several aspects need to be taken into
consideration for the melody comparing engine:
first, the user is singing part of a song, and we
have no prior knowledge about which part of the
song it is, in other words, we don’t know the
exact location in each song to compare with the
query; secondly, users may sing in a different
tempo (speed) with the original song, so we don’t
know how much to scale the query in the time
space before comparison; thirdly, not most people
can remember and sing with the absolute pitch of
a song, actually a song is recognized as having
the same melody when the pitch of all its notes
are transposed with the same amount, therefore
the absolute pitch of each note is not so important,
only the intervals between notes matters.

In the light of the analyze above, the comparing
should not be affected by the absolute pitch value
and time scale of the query, and the shape of the
query’s melody contour is the real ‘value’ that we
want to compare to the various contour shapes in
the music files from the database. And the
comparing of the query with each reference
music file is a learning process that the engine
finds out the time scale, position in the reference
music, and pitch transposition value that fit the
query contour shape best with the reference
contour shape. As figure 2 shows.

Figure.2 Melody Contour Shape Fitting

Finally, the comparing algorithm should be able
to tolerate small pitch interval error and small
melody rhythm mismatch, since it is often hard to
sing a song with exactly correct rhythm and tune.

3. Comparing Algorithm
Two features determine the shape of the query
melody contour: the rhythm and the pitch
intervals. My algorithm is based on the Linear
Alignment Matching algorithm (LAM)
introduced in [4] to separately evaluate the
rhythm/pitch similarity of the query and the
reference music. I further introduced pitch
transposition to ensure a better fit. The specific
comparing algorithm between a query and a
reference music piece having similar total amount
of notes is as following:

The learning process for the best fit first starts
with aligning the notes onset time of the two
melody contours to get the largest rhythm
similarity. The query contour is first scaled to the
same time span with the reference contour, and
the beginning time of each note in the two
contours are compared in series, if the difference
is smaller than a dynamic threshold, I consider
this as a rhythm match, and rescale the whole
query contour to align the two matching notes
(under the constraint that all the formerly aligned
notes remain aligned after the rescaling). Then,
the rhythm score is calculated according to the
total alignments found. This alignment algorithm
is tolerant to note insertion/deletion and small
rhythm mismatch.

After the two contours are aligned with respect to
rhythm, a pitch score is calculated according to
the pitch difference between them, using a special
distance function. The transposition value that
corresponds to the least pitch difference is
applied to the query.

The total similarity score is the weighted sum of

58

60

62

64

66

68

70

72

74

M
id

in
ot

e

Resolution in beats 0.01

58

60

62

64

66

68

70

72

74

M
id

in
ot

e

Resolution in beats 0.01

58

60

62

64

66

68

70

72

74

M
id

in
ot

e

0 2 4 6 8 10 12
54

56

58

60

62

64

66

68

70

72

Time (beats)

M
id

in
ot

e
the rhythm & pitch score. Figure.3 shows several
intermediate results during a matching iteration
between two contours, where red plot is the query,
and the blue plot is the reference melody.

Figure.3 contour matching process

The detailed description of the comparing
algorithm can be found in [3]. I introduced pitch
transposition to the query contour to further fit
the shape of two contours.

The above algorism works for comparing two
melody sequences with similar length. However,
in most cases, we need to compare a short query
melody with a much longer reference melody.

This problem is solved as following: all notes
sequences that have comparable note amount
with the query are excerpted from the long
reference melody, and compared with the query
separately. The sequence with the highest
similarity score is the position in the reference
melody that mostly resembles the query melody,
and this maximum similarity score represents the
similarity between the query and the reference
melody.

The computational time for comparing a query of
12 notes and a reference melody of 100 notes is
less than 0.5 second.

4. Test Setup
Since I have only built the melody comparing
engine, and don’t have the music transcription
engine, the music files I use as the queries and
references need to be in a format that is easy to
retrieve music scores from. MIDI file is a good
option for this requirement, because unlike most
other formats (WAV, mp3, etc) which store the
waveform of music, MIDI directly stores pitch
value and onset time of the notes. I use Matlab
MIDI Toolbox version 1.0 [4] to read MIDI file
into Matlab.

The reference music database I use is composed
of 100 mono-channel MIDI files downloaded
from the Themefinder music archive [5] and from
my own collections. The genres of the music
pieces are mainly classic and pop.

The query melodies is generated by me using
composing software called ‘Composer Master
2008’, it transfers music scores into a hearable
MIDI file. I compose the query melodies after
hearing and remembering some part of the
reference music pieces.

10 queries are made, because I am not an expert
in music, inevitably there is un-intended error in

Most queries can find their correct matches
within 3 songs that have the top similarity score.
The query which is intentionally made out of tune
find its correct match within 9 top search results,
and the query which is intentionally made poor in
rhythm is the one that fit worst with the database,
the correct match is among the top 15 search
results. This shows that rhythm similarity counts
more than pitch similarity. It can be explained by
the algorithm I use. The comparing process first
try to align the two melodies in rhythm, if the two
melody have a large difference in rhythm, then
the notes of the two melodies can not be correctly
aligned, so even if the query is perfect in pitch,
my later pitch score calculation will still return a
low value, because the notes are not aligned
correctly. This gives rise to problems, since
normally a song with correct pitch but poor
rhythm is considered to be closer to the original
piece than a song with correct rhythm but poor
pitch. In the future, the comparing need to be
improved that the rhythm matching and pitch
matching are no longer coupled together.

the queries such as rhythm/pitch variation, tempo
change and music note transpose, etc. This
simulates the real scenario in which the user
generates the query music by humming, and there
is likely to be variation of the melody he/she
hums from the original piece. And the music
transcribing engine is also likely to introduce
error. In the 10 queries I have made, one is
intentionally made out of tune, and another one
has a very different rhythm with the original
piece. This is to test how my melody comparing
engine deals with largely distorted query input.

5. Test Results and Discussion
For 7/10 of the queries, the comparing engine
retrieves the correct songs in the database as the
most similar to the queries. For 8/10 queries, the
correct song is found among top 3 matches
retrieved by the comparing engine. Figure.4
shows the retrieving success rate VS. the number
of top matches allowed to display.

0 2 4 6 8 10 12 14 16
20%

30%

40%

50%

60%

70%

80%

90%

100%

NO. of Top Matches Displayed

R
et

rie
vi

ng
 S

uc
ce

ss
 R

at
e

6. Conclusion
In this project I built a melody comparing engine
based on the LAM algorithm. The engine is able
to retrieve the correct song for 80% of the queries
among the 3 top matches. Future work needs to
be done to decouple the rhythm matching and
pitch matching process.

Figure.4 retrieving success rate

VS. NO. of top matches displayed

References
[1] Sung-Phil Heo, Motoyuki Suzuki, Akinori Ito, Shozo Makino, and Hyun-Yeo Chung, ‘Error Tolerant
Melody Matching Method in Music Information Retrieval’, A. Nürnberger and M. Detyniecki (Eds.):
AMR 2003, LNCS 3094, pp. 212–227, 2004.
[2] Thomas Gersic, ‘Music Melody Matching Machine’, http://www.gersic.com

http://www.gersic.com/

[3] Ya-Dong Wu, Yang Li, Bao-Long Liu, ‘A New Method For Approximate Melody Matching’,
Proceedings of the Second International Conference on Madune Learning and Cybernetics, Wan, 2-5
November 2003
[4] MIDI Toolbox version 1.0, http://www.jyu.fi/musica/miditoolbox/
[5] MIDI file archive from Themefinder, http://composer.themefinder.org/

http://www.jyu.fi/musica/miditoolbox/
http://composer.themefinder.org/

