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1. Introduction 
With the abundance of digital music files on the 
internet, how to efficiently and effectively find a 
music piece is crucial. Conventional music search 
systems utilize text information of the music, 
such as the title of a song, a singer’s name, or the 
lyrics of a song. In many cases, such text-based 
music search tool is not sufficient. Often, a user 
may remember how to sing part of a song he/she 
has once heard, and wants to find the complete 
piece of music on the internet, but not knowing 
any other information about the music (i.e. tile, 
composer name), the search can not be done with 
conventional search tools. Such scenario 
demands the use of a query-by-humming (QBH) 
music search system. 
 
A QBH system is a search tool that takes audio 
file- often a short piece of query melody hummed 
or played by the user- as the searching input, and 
by comparing the inputted audio file (query) with 
the music files (references) in the database, the 
QBH system finds the corresponding music files, 
part of which is most similar to the query sound. 
Several approaches have been tried for this kind 
of system in the past, and various comparing 
algorithms are used, such as dynamic 
programming [1], edit-distance alignment [2], 
and linear alignment matching [3]. 
 
In this project, I focus on the melody comparing 
part of the QBH system, and have built a melody 
comparing engine based on the linear alignment 
matching algorithm. 
 
 

2. QBH System composition 
An overview of a QBH system is shown in 
Figure.1. 
 

 
Figure.1 Overview of a QBH System 

 
The system is mainly comprised of two parts, 
melody transcribing engine and melody 
comparing engine. The melody transcribing part 
takes the user query sound wav information 
(often in the format of .WAV file), divide it into 
many (often 1024) segments, and do 
time-frequency domain transformation to get the 
frequency information of each segment. Then the 
transcribing engine determines the pitch of sound 
each segment represents, and finally transcribes 
the whole piece of query sound waveform to the 
score or the melody contour it represents (a 
melody contour is the mathematical 
representation of a music score series, and it 
records the sound pitch value at any position of a 
song).  
 
Several past CS229 projects have worked on 
transcription of audio files, so in this project, I 
focus myself on the melody comparing engine. 
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The task of the melody comparing engine is to 
find out how similar the melody contour of the 
query music is to the contour of each music piece 
in the database, and then returns one or several 
music pieces that have the highest similarity 
score in the database. 
 
Several aspects need to be taken into 
consideration for the melody comparing engine: 
first, the user is singing part of a song, and we 
have no prior knowledge about which part of the 
song it is, in other words, we don’t know the 
exact location in each song to compare with the 
query; secondly, users may sing in a different 
tempo (speed) with the original song, so we don’t 
know how much to scale the query in the time 
space before comparison; thirdly, not most people 
can remember and sing with the absolute pitch of 
a song, actually a song is recognized as having 
the same melody when the pitch of all its notes 
are transposed with the same amount, therefore 
the absolute pitch of each note is not so important, 
only the intervals between notes matters. 
 
In the light of the analyze above, the comparing 
should not be affected by the absolute pitch value 
and time scale of the query, and the shape of the 
query’s melody contour is the real ‘value’ that we 
want to compare to the various contour shapes in 
the music files from the database. And the 
comparing of the query with each reference 
music file is a learning process that the engine 
finds out the time scale, position in the reference 
music, and pitch transposition value that fit the 
query contour shape best with the reference 
contour shape. As figure 2 shows. 

 

Figure.2 Melody Contour Shape Fitting 

Finally, the comparing algorithm should be able 
to tolerate small pitch interval error and small 
melody rhythm mismatch, since it is often hard to 
sing a song with exactly correct rhythm and tune. 
 

3. Comparing Algorithm 
Two features determine the shape of the query 
melody contour: the rhythm and the pitch 
intervals. My algorithm is based on the Linear 
Alignment Matching algorithm (LAM) 
introduced in [4] to separately evaluate the 
rhythm/pitch similarity of the query and the 
reference music. I further introduced pitch 
transposition to ensure a better fit. The specific 
comparing algorithm between a query and a 
reference music piece having similar total amount 
of notes is as following: 
 
The learning process for the best fit first starts 
with aligning the notes onset time of the two 
melody contours to get the largest rhythm 
similarity. The query contour is first scaled to the 
same time span with the reference contour, and 
the beginning time of each note in the two 
contours are compared in series, if the difference 
is smaller than a dynamic threshold, I consider 
this as a rhythm match, and rescale the whole 
query contour to align the two matching notes 
(under the constraint that all the formerly aligned 
notes remain aligned after the rescaling). Then, 
the rhythm score is calculated according to the 
total alignments found. This alignment algorithm 
is tolerant to note insertion/deletion and small 
rhythm mismatch. 
 
After the two contours are aligned with respect to 
rhythm, a pitch score is calculated according to 
the pitch difference between them, using a special 
distance function. The transposition value that 
corresponds to the least pitch difference is 
applied to the query. 
 
The total similarity score is the weighted sum of 
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the rhythm & pitch score. Figure.3 shows several 
intermediate results during a matching iteration 
between two contours, where red plot is the query, 
and the blue plot is the reference melody. 
 

Figure.3 contour matching process 
 
The detailed description of the comparing 
algorithm can be found in [3]. I introduced pitch 
transposition to the query contour to further fit 
the shape of two contours. 
 
The above algorism works for comparing two 
melody sequences with similar length. However, 
in most cases, we need to compare a short query 
melody with a much longer reference melody. 

This problem is solved as following: all notes 
sequences that have comparable note amount 
with the query are excerpted from the long 
reference melody, and compared with the query 
separately. The sequence with the highest 
similarity score is the position in the reference 
melody that mostly resembles the query melody, 
and this maximum similarity score represents the 
similarity between the query and the reference 
melody. 
 
The computational time for comparing a query of 
12 notes and a reference melody of 100 notes is 
less than 0.5 second. 
 

4. Test Setup 
Since I have only built the melody comparing 
engine, and don’t have the music transcription 
engine, the music files I use as the queries and 
references need to be in a format that is easy to 
retrieve music scores from. MIDI file is a good 
option for this requirement, because unlike most 
other formats (WAV, mp3, etc) which store the 
waveform of music, MIDI directly stores pitch 
value and onset time of the notes. I use Matlab 
MIDI Toolbox version 1.0 [4] to read MIDI file 
into Matlab. 
 
The reference music database I use is composed 
of 100 mono-channel MIDI files downloaded 
from the Themefinder music archive [5] and from 
my own collections. The genres of the music 
pieces are mainly classic and pop. 
 
The query melodies is generated by me using 
composing software called ‘Composer Master 
2008’, it transfers music scores into a hearable 
MIDI file. I compose the query melodies after 
hearing and remembering some part of the 
reference music pieces. 
 
10 queries are made, because I am not an expert 
in music, inevitably there is un-intended error in 



Most queries can find their correct matches 
within 3 songs that have the top similarity score. 
The query which is intentionally made out of tune 
find its correct match within 9 top search results, 
and the query which is intentionally made poor in 
rhythm is the one that fit worst with the database, 
the correct match is among the top 15 search 
results. This shows that rhythm similarity counts 
more than pitch similarity. It can be explained by 
the algorithm I use. The comparing process first 
try to align the two melodies in rhythm, if the two 
melody have a large difference in rhythm, then 
the notes of the two melodies can not be correctly 
aligned, so even if the query is perfect in pitch, 
my later pitch score calculation will still return a 
low value, because the notes are not aligned 
correctly. This gives rise to problems, since 
normally a song with correct pitch but poor 
rhythm is considered to be closer to the original 
piece than a song with correct rhythm but poor 
pitch. In the future, the comparing need to be 
improved that the rhythm matching and pitch 
matching are no longer coupled together. 

the queries such as rhythm/pitch variation, tempo 
change and music note transpose, etc. This 
simulates the real scenario in which the user 
generates the query music by humming, and there 
is likely to be variation of the melody he/she 
hums from the original piece. And the music 
transcribing engine is also likely to introduce 
error. In the 10 queries I have made, one is 
intentionally made out of tune, and another one 
has a very different rhythm with the original 
piece. This is to test how my melody comparing 
engine deals with largely distorted query input. 
 

5. Test Results and Discussion 
For 7/10 of the queries, the comparing engine 
retrieves the correct songs in the database as the 
most similar to the queries. For 8/10 queries, the 
correct song is found among top 3 matches 
retrieved by the comparing engine. Figure.4 
shows the retrieving success rate VS. the number 
of top matches allowed to display. 
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6. Conclusion 
In this project I built a melody comparing engine 
based on the LAM algorithm. The engine is able 
to retrieve the correct song for 80% of the queries 
among the 3 top matches. Future work needs to 
be done to decouple the rhythm matching and 
pitch matching process. 

 
Figure.4 retrieving success rate 

VS. NO. of top matches displayed 
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