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1. Overview

Automatic detection and classification of arrhythmia
in electrocardiograms (ECG) provides a framework for
efficient diagnosis and broader outreach to patients at
risk for cardiac diseases. While prevalent types of ar-
rhythmia include premature ventricular contractions
(PVC) and atrial fibrillation, the majority of existing
literature focuses on automatic detection and classi-
fication of the former type. In this report, we dis-
cuss our heuristic and implementation for detection
of atrial fibrillation, using a dataset provided by the
MIT/BIH Arrhythmia Database. Using features from
Fourier analysis, wavelet transformation, and R-R in-
terval analysis, linear discriminant analysis (LDA) on
individual segments performed well with classification
error of approximately 10%. Our detector, which built
on top of our classifier, successfully identified regions
of atrial fibrillation with less than 2% error.

2. Motivation

2.1. Background

Electrocardiograms (ECGs) are recordings of the
heart’s electrical activity and are widely used by physi-
cians to diagnose pathologies related to the heart. Nor-
mal (sinus) rhythms manifest as periodic time signals
representing a series of heart beats, each with charac-
teristic peaks that correspond to events during a single
heart beat. Patients with or at risk of cardiovascular
diseases often present ECGs that are irregular in rate
and in morphology of the signal.

There is a recognized industry in creating automatic
detection algorithms for arrhythmia, because it is im-
practical for doctors to comb through ECG data by
hand. Episodes of arrhythmia may be infrequent, and
recordings of more than 48 hours are often necessary
to catch them.

However, while prevalent types of arrhythmia include
both premature ventricular contractions (PVC) and
atrial fibrillation, most prior research has focused on
PVC. The techniques used for detecting PVC, which
occurs as singular beats, cannot be applied directly to
detecting atrial fibrillation, which takes place over a
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Figure 1. Our overall approach.

sequence of heartbeats and can be observed by irreg-
ularity of both morphology and rhythm of heartbeats.

2.2. Problem Statement

Given an entire ECG recording, can we detect regions
with atrial fibrillation?

3. Our Approach

Our approach to addressing the problem of atrial fib-
rillation detection is depicted in Figure 1. Using the
MIT-BIH Arrhythmia database as a signals database,
we first trained our binary classifier, which used lin-
ear discriminant analysis, on both normal and atrial
fibrillation regions in these signals. The features we
used are detailed in a Section 5. Afterwards, we ap-
plied our binary classifier to regions of our test signal.
More precisely, we classified rolling regions over our
test signal, assigning all points in the signal a proba-
bility score for atrial fibrillation. For verification we
compared our predicted regions of atrial fibrillation to
regions of actual atrial fibrillation as annotated by the
database.

4. Obtaining ECG Data

PhysioNet provides access to various ECG datasets,
including the MIT-BIH Arrhythmia Database, which
provides beat and rhythm annotations manually done
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Figure 2. Segments of atrial fibrillation and normal beats.

by physicians. The Waveform Database (WFDB) Li-
brary provides C functions to decode the data and an-
notations, which we were able to port into MATLAB.
The database is comprised of 48 fully annotated half-
hour, two-lead ECG recordings. Of these, 7 recordings
contain atrial fibrillation – these 7 were our signals of
interest.

5. Feature Selection

We considered several different features to use in classi-
fication of individual heartbeats. The most successful
set of features was a combination of all the features we
considered - frequency components, time series data,
and length of the beats.

5.1. Defining Training Examples

One straightforward approach would have been to use
individual heartbeats as training examples, since the
end goal was to classify individual beats. However,
consecutive beats tend to be very similar, and this
approach would have given more weight to training
examples that occur in long continuous runs. Espe-
cially given the few datasets available, this could have
skewed the classification algorithm considerably. Our
approach therefore segmented the records according
to the annotations of “normal” or “atrial fibrillation”,
and each segment was considered one training exam-
ple. Each training example could have a variable num-
ber of beats.

We only used records containing atrial fibrillation; we
did not use normal segments from any records not con-
taining atrial fibrillation.

5.2. Frequency Components

We selected frequency features by applying the Fourier
transform on the raw data. We binned the contribu-
tions in bins of 10 Hertz; that is, the frequency com-
ponents between 0 and 10 Hertz would be summed,
between 10 and 20, and so on. We then computed the
power (in decibels) by taking the log of these sums,
and normalized them. We experimented with different
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Figure 3. Top: Normal signal and histogram of frequencies
after Fourier transform. Bottom: Same, but for signal with
atrial fibrillation.

size bins, and different numbers of bins (which corre-
sponded to number of features). In general we found
that bins of 10 Hertz were best, and also that the fre-
quencies above 200 Hertz reflected noise in the ECG
signals and were not representative of wave morphol-
ogy or timing.

5.3. Time Series Data

We selected time series features by performing wavelet
transform, windowing individual beats, downsampling
those beats, and averaging the samples for each win-
dow.

ECG recordings frequently exhibit baseline wander –
artificial, fluctuating curves that offset entire ECG sig-
nals – due to various sources of recording noise, includ-
ing patient movement and mechanical displacement of
the ECG leads. Before extracting time series features,
we first preprocessed the signal to remove baseline
wander. We compared different ways of filtering the
signal to recover the baseline, including single-median,
double-median, double-mean, and lowpass filters. We
found that a double median filter, first with width 300
milliseconds and second with width 600 milliseconds,
was most effective for retrieving the baseline, which we
then subtracted from the original signal.

The next step was to smooth out noise and enhance
morphological features of the signal. Based on results
in literature, particularly from Andreao et al., and
our own experimentation, we chose to use the wavelet
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Figure 4. Top: ECG with baseline wander and the signal
after double-median filter. Bottom: ECG with baseline
wander removed.
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Figure 5. Wavelet transformed signal with extraction win-
dows and selected features.

transform with the “Mexican hat” wavelet, given by
W f(t, s) = f ∗ φ̄s(t) = 1√

s

∫ ∞

−∞
f(t)φ∗

(

τ−t

s

)

dτ . Andreoa

et al. [Andreao07] compared various wavelet trans-
form, and showed that the Mexican hat wavelet is sim-
ilar in shape to ECG signals and is the ideal candidate
to enhance the major features of the signal while re-
moving high frequency noise. After testing different
scales of the wavelet transform on our ECG signals,
we settled on the scale s = 22.

To determine the locations of individual beats, we used
the MIT database annotations for QRS peaks and win-
dowed by splitting beats halfway between peaks. After
windowing, we anchored the QRS peak of each win-
dow as the halfway point – as it was the most signif-
icant feature – and uniformly sampled points before
and after the peak to get the desired number of fea-
tures.Our first approach was to find local maxima and
minima within subintervals of the window, but the
more straightforward downsampling produced better
results in classification.

Finally, for each training example, we averaged the
features obtained per beat in the example.

5.4. Beat Length

Because our windows were of variable size, we used
the length of windows as a feature. In fact, much pre-

vious work on analyzing ECG signals considered R-R
intervals as an important characteristic in differentiat-
ing normal and abnormal beats. However, we found it
easier to substitute length per beat as an approximate
measure of R-R intervals, which would have required
looking at previous and subsequent beats. We grouped
this feature with the time series data in our testing.

5.5. Combining Feature Sets

After testing the effectiveness of the classifier using the
different feature sets, we found that combining all of
them gave the best results.

For the frequency and time series analysis, the num-
ber of features extracted per training example was very
straightforward, corresponding to frequency bins and
downsampled points, respectively. When testing the
combination of sets, for a desired number of features
n, we concatenated n features for each set to get 2n

features. However, when concatenated, we found our
training matrix of a higher dimension to be not full
rank, limiting our inference abilities. That is, the
higher dimensional data actually resides in a lower one,
so we applied principal component analysis to reduce
the dimensionality back down to n. On the downside,
PCA made it difficult to attach physiological meaning
to the features we extracted.

6. Classification

Our goal for classification was binary classification of
segments of ECG signals as normal beats or atrial fib-
rillation.

6.1. Classification Algorithm

We used standard Gaussian discriminant analysis with
a pooled covariance matrix as our classification algo-
rithm. We also tried Gaussian discriminant analysis
with covariance matrices stratified by group, as well
as Naive Bayes, with less success.

6.2. Performance Metrics

We used leave-one-out cross-validation to evaluate the
performance of our classifier, since we were working
with a limited dataset. The best performance was
9.17% error using 10 combined features, with 92.31%
sensitivity and 90% specificity. The lowest classifica-
tion error using only frequency features was 12.84%,
with 20 features, measuring frequency components up
to 200 Hertz. The lowest classification error using only
temporal components was 18.37%, with 10 features
(9 samples per window, combined with beat length).
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Classifying with only the individual frequency or tem-
poral feature sets had perfect sensitivity but no speci-
ficity, indicating that the classifier always erred on the
side of predicting atrial fibrillation.

# Classification error
features Fourier Wavelet + RR Both

5 0.2569 0.2081 0.1193

10 0.1927 0.1837 0.0917

15 0.1651 0.2110 0.0917

20 0.1284 0.2569 0.1101

25 0.1651 0.2110 0.1284

# Sensitivity = # TP / (# TP + # FN)
features Fourier Wavelet + RR Both

5 1 1 0.8974

10 1 1 0.9231

15 1 1 0.8718

20 1 1 0.8974

25 1 1 0.8205

# Specificity = # TN / (# TN + # FP)
features Fourier Wavelet + RR Both

5 0 0 0.8714

10 0 0 0.9000

15 0 0 0.9286

20 0 0 0.8857

25 0 0 0.9000

7. Detection

An automatic detection tool for atrial fibrillation is
the primary application of our rhythm classification
tool – the original motivation of our problem was that
arrhythmia are often only captured in Holter record-
ings that are too long for visual scanning by doctors.
Using our best performing set of features for classifi-
cation, we developed an algorithm to detect episodes
of atrial fibrillation in a test ECG record, with only
1.75% error on our test data.

To classify sections of a 30-minute MIT database
record, we considered a test window which we slid
through the record with constant increments on the
starting index. From each window we extracted 10
features combining Fourier transforms, wavelet trans-
forms, and R-R interval analysis, and classified the seg-
ment with linear discriminant analysis, as described
above. Test windows classified as atrial fibrillation
were output as an array of 1’s for the represented sam-
ple indices, and 0’s otherwise. The relative probability
of finding an arrhythmia at a particular index was cal-
culated as the normalized cumulative sum of all out-
puts of test windows that included the point. If this
probability was greater than 0.5, we predicted arrhyth-
mia, and normal otherwise.

5

 

 

R
e

la
ti

v
e

 p
ro

b
a

b
ili

ty
R

e
la

ti
v

e
 p

ro
b

a
b

ili
ty

Sample ECG Recording 1 with a!b

Sample ECG Recording 2 with a!b

Entire recording (30 min)

Entire recording (30 min)

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

detected
actual

detected
actual

Figure 6. Our detector successfully identified regions with
atrial fibrillation.

We used a constant length of 5000 samples per test
window, corresponding to 25 seconds. The offset be-
tween each start index was set to be 100 samples, cor-
responding to 0.5 seconds. We chose these numbers
because segments of arrhythmia often last several min-
utes, and 0.5 seconds corresponds to approximately
half a beat in a normal sinus rhythm and up to a
whole beat for irregular rhythms. The relative frac-
tion of the offset to the test window length defines the
vertical resolution of the additive algorithm, while the
absolute value of the offset changes horizontal resolu-
tion.

8. Conclusions

Machine learning applied to ECG analysis provides a
platform for accurate and efficient arrhythmia diag-
nosis without extensive knowledge of the mechanisms
or characteristics of different classes. Through exper-
imentation with different feature extraction and ma-
chine learning techniques, we developed a robust bi-
nary classification method for atrial fibrillation. De-
tection using our wave classifier shows promise in clin-
ical application of our algorithm.

Our approach first represented different heartbeats
with characteristic features combining frequency do-
main analysis as well as time series data, and then used
these features to train a linear discriminant analysis
classifier. The standalone classifier had approximately
90% accuracy, but our detection tool performed even
better, successfully detecting regions of atrial fibrilla-
tion with only 1.75% error.

Further work to improve the performance of our clas-
sification and detection algorithms should incorporate
different ways of dividing up segments for feature anal-
ysis. In our temporal analysis we considered beats
individually, but one researcher, Omer Inan, has sug-
gested that larger windows of 3 beats are preferable,
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because they capture rhythm transitions. Our results
showed that combining time series data with Fourier
transformed data drastically improved performance,
indicating the importance of longer scale wave char-
acteristics such as heart rate for classification of atrial
fibrillation.
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