
Online Question Asking Algorithms For Measuring Skill

Jack Stahl

December 14, 2007

1 Abstract

We wish to discover the best way to design an
online algorithm for measuring hidden qualities.
In particular, we study the problem of design-
ing a computer-adaptive test in a GRE-like set-
ting. We first define a model for the probability
that a test taker of skill θ will correctly answer
a test question of difficulty dq. We then dis-
cuss basic properties of the setting. We present
an multiplicative-weights algorithm for selecting
questions, and present an incomplete argument
for its optimality. We then present experimental
results to supplement that argument. Finally, we
discuss related issues in the setting of computer-
adaptive testing.

2 The Model

We model the situation in the following way:
each test taker has some skill θ, and each ques-
tion has difficulty dq. The probability that the
test taker correctly answers the question (an
event we denote X) is given by

Pdq(X; θ) = sigmoid(θ − q) =
1

1 + e−(θ−dq)

That is, if θ >> q, then the test-taker will prob-
ably answer the question correctly; if θ << q,
then probably not. This model is common with
modern item-response theory; derivatives of it
are used in practice (see e.g [8]). Common exten-
sions include allowing a constant term that can
account for that one should have a lower bound
on the probability of an incorrect answer on a
multiple choice question, but this could be done

equally well by choosing an alternative logistic
function.

3 Basic Properties

We now consider our first basic question. Given
the model above for how a test-taker performs,
is it “better” to mess up easy questions but get
hard ones right, or is it better to ace the easy
questions but mess up the hard ones? Formally,
we fix a set of difficulty levels for n questions,
Q = {q1, . . . , qn}. We now fix some number w of
incorrect answers, and we consider all possible
sets of incorrect answers W ⊆ Q, |W | = w, and
let the correctly-answered questions be R = Q \
W . Letting f(Y ; θ) be the likelihood of these
answer results Y as a function of θ, we have:

f(Y ; θ) =
∏
w∈W

e−(θ−dw)

1 + e−(θ−dw)
∗
∏
r∈R

1
1 + e−(θ−dr)

=
∏
w∈W

e−(θ−dw) ∗
∏
q∈Q

1
(1 + e−(θ−dq))

=
∏
w∈W

edw ∗ e−θ|W | ∗
∏
q∈Q

1
(1 + e−(θ−dq))

Indeed this is a function of the set W ; we ob-
serve that the data is more likely for harder ques-
tions, which is intuitively correct (it is unusual
for someone to be able to answer hard questions
but not easy ones). However, consider the rel-
ative likelihood of two different values θ and θ′,
i.e. f(Y ; θ)/f(Y ; θ′). This is not a function of
W explicitly but only of Q and |W |. In other
words, which questions were answered correctly

1

does nothing to inform us about how skilled the
test-taker might be! The answer to our original
question is that it simply does not matter which
questions a test-taker misses in terms of estimat-
ing skill.

Another question we might ask is, what is the
right question to ask a test-taker of a certain skill
level? Put another way, if we thought we knew θ,
how could we prove it most efficiently. Formally,
we ask how to maximize, over difficulty dq, the
Fisher Information of X, the random variable of
whether or not the test taker correctly answers
question q

Idq(θ) = −E
[
∂2

∂θ2
log f(y; θ)

]
y

= −
(

1
1 + e−(θ−dq)

∂2

∂θ2

(
log

1
1 + e−(θ−∂q)

)
+

e−(θ−dq)

1 + e−(θ−dq)
∂2

∂θ2

(
log

e−(θ−dq)

1 + e−(θ−dq)

))
= −

(
− 1

1 + e−(θ−dq)
∂2

∂θ2
log(1 + e−(θ−dq))

+
e−(θ−dq)

1 + e−(θ−dq)
∗

∂2

∂θ2

(
log(e−(θ−dq))− log(1 + e−(θ−dq))

))
=

∂2

∂θ2
log(1 + e−(θ−dq))

=
e−(θ−dq)

1 + e−(θ−dq)

(
1− e−(θ−dq)

1 + e−(θ−dq)

)

Since this is X(1 − X) (for 0 ≤ X ≤ 1), we
see this is maximized by X = 1

2 , or in other
words dq = θ. This is again no surprise – if
we asked something too easy, it would hard to
differentiate θ from anything else above dq (and
likewise for too hard). What is interesting that
a binomial random variable parameterized by θ
has F.I. 1

θ(1−θ) , and so it is generally binomials
with extreme probabilities that carry the most
information. Here we depend very strongly on
the steepness of the sigmoid function at 0.

4 Potential Directions

We now turn our attention to the main ques-
tion of how to choose an online algorithm which
adapts to the results of the test-taker in choos-
ing further questions to ask. One potential way
to look at this problem is as an instance of noisy
binary search, A naive such algorithm would re-
peatedly ask questions of some difficulty dq until
it was confident within ε of either θ > dq or
θ < dq, then proceed as in binary search. The
problem with this approach is that the number
of questions asked before the binary search has
a factor ε leading constant. Since in a situa-
tion such as the GRE questions are extremely
limited, we can not afford to take, e.g., 10 ques-
tions at one difficulty level. It is however con-
ceivable that backtracking ala [4] could overcome
this difficulty. One alternative algorithm is to
greedily maximize the fisher information Idq(θ̂),
where θ̂ is the current MLE estimate of θ; this
is more or less what is used by the GRE (see
[6, 7] for details), and corresponds (via the above
lemma) to always picking a question whose dif-
ficulty matches the current estimate of the test
takers skill. One problem with this is that the
MLE given only correct answers is the highest
possible value of θ, which means that the sec-
ond question will either be the easiest or hardest
possible question, intuitively unusual. To com-
bat this, we suggest the following:

5 A Multiplicative Weights Al-
gorithm

1. Initialize weights w(θ) to a prior (if avail-
able / MAP learning) or else the uniform
distribution (for MLE).

2. For each 1, . . . , n

• Find θq = arg maxθq
∑

θ w(θ) ∗ Iθq(θ)
• Ask question q with difficulty θq
• Given result y, update w(θ) = p(y|θ) ∗
w(θ) and normalize

2

3. Output arg maxθ̂ w(θ̂)

It is straight forward to see that because we are
doing Bayesian updating at each question, our
output will either be the MLE or the MAP es-
timate (depending on whether or not we used a
non-uniform prior). The key difference between
this and the greedy algorithm is that (we will
speak in Bayesian semantics but the reasoning
holds for an MLE setting as well) we maximize
the expected Fisher Information given our cur-
rent distribution for θ instead of merely maxi-
mizing Fisher Information at a single (possibly
extreme) point. To illustrate this, consider the
case where θ ∈ [−5, 5] (discretized into tenths),
and the user correctly answers one question of
difficulty 0. Then difficulty of the next question
asked would be 2.7, not 5.0 as it would be in the
greedy situation. While the MLE may be 5.0, it
is also relatively likely that θ is any other value
greater than 0, and a question of difficulty 5.0
would not be an efficient question for most other
positive values of θ. Another advantage over the
greedy algorithm is that one can choose to use a
prior. In tests such as the GREs, a prior such as
a normal distribution is usually already a mod-
eling assumption, and it can now be explicitly
incorporated into the model.

6 A Failed Proof

We wish to say something substantial of this al-
gorithm. Ideally, we would be able to say that
it is minimizes the mean-squared error over all
possible tests, or that it is a minimum-variance
unbiased estimator of θ. Here we sketch the idea
of a proof which we long attempted but failed
to turn into a rigorous statement. The idea is
the following: Fundamentally, the Fisher Infor-
mation of any test bounds the variance of any
estimator, and in particular, MLEs are asymp-
totically unbiased and asymptotically achieve a
variance of 1/I(θ). Therefore, if we can maxi-
mize the Fisher Information of the the total test
we can minimize the variance of the MLE of the

whole test. Since Fisher Information is additive,
this reduces to maximizing the Fisher Informa-
tion of each individual question. By induction,
we can assume we have maximized Fisher Infor-
mation up till any particular question q. Since
we have maximized Fisher Information, our cur-
rent distribution on w(θ) is as accurate as possi-
ble. Therefore, our computation of the expected
Fisher Information (with respect to the true θ)
is as accurate as possible, and so indeed at ques-
tion q we maximize the possible Fisher Informa-
tion from the question. This proof has three ma-
jor difficulties. One, we wish to drawn both on
Bayesian expectation semantics when maximiz-
ing Fisher Information as well as non-Bayesian
MLE semantics in discussing the relationship be-
tween variance of an estimator and Fisher Infor-
mation. Two, the direct relationship between
Fisher Information and the variance / unbiased-
ness of MLEs is only asymptotic over many i.i.d.
samples; here we do not have any i.i.d. samples.
Three, it is unclear that maximizing Fisher Infor-
mation corresponding to a “maximally accurate”
a posteriori or likelihood distribution. While at-
tempts can be made to rectify any of these prob-
lems, we were unable to glue all of them together
simultaneously.

7 Experimental Data

In the absence of theoretical guarantees, we
wrote a Python script in order to test the per-
formance of our multiplicative weights algorithm
against the similar greedy algorithm. In gen-
eral, with sufficiently many questions, the algo-
rithms performed remarkably similarly. How-
ever, when questions are very limited (n ≤ 5),
the variance of the multiplicative-weights algo-
rithm is significantly lower. This agrees with our
earlier discussion that, with very very few ques-
tions, the MLE is not yet accurate, and so max-
imizing Fisher Information with respect to it is
not necessarily very helpful. However, once the
greedy algorithm has enough data for a reason-
able MLE estimate the algorithms become more

3

or less equivalent. It does also appear that the
multiplicative-weights algorithm is slightly more
efficient at detecting extreme θ, perhaps because
it does not “punish” them with extreme ques-
tions too early. Both estimators appear to have
a bias towards the middle of the domain of θ
that tends towards 0 with increasing n; such
a bias might contribute to the difficulty of our
failed proof. Finally, we originally expected that
a multiplicative-weights algorithm would mini-
mize the variance of our estimator. From the
data, we can see that, even for sufficiently large
questions, in fact the multiplicative weights esti-
mator does have a smaller sample variance, along
with a more accurate sample mean, but only no-
ticeably so when the discretization of the θ-space
is small enough; otherwise preditions are “easy”
enough that the algorithms seem to be identical.1

8 Assorted Discussion

From the data it appears that one major advan-
tage of the multiplicative weights algorithm is its
resistance to bad early estimates Another way
to stave this off would be to always use a prior,
and another is to use KL Information instead of
Fisher Information [3]. This however yields poor
results if done exclusively, and so [3] suggests us-
ing KL Information only for early questions; one
nice property of the multiplicative weights algo-
rithm is that it does not require such tuning.

There are many other multiplicative-weights
algorithms for various other domains ([1], [2]).
However, most of them try to minimize some
loss function in some repeated game. In this sit-
uation, we are concerned only with the quality
of our final estimate. One can try to construct
a loss function such as the Idθ(θ) − Idq(θ), the
difference in Fisher Information between asking
question q and the optimal question. However,
we are not privy to our incurred per-question

1In the table, [-a, a] means that the domain for θ was
the integers beginning at −a and ending at a. When
we write [−5.0, 5.0], this means we instead discretized by
hundredths. n is the number of questions.

losses. Because of this distinction in optimiza-
tion and knowledge, straight-forward Bayesian
updating seems to make sense here where it
might not have in other multiplicative-weights
algorithms.

We have claimed that the GRE uses the greedy
algorithm, but we know that the GRE does
not ask extremely hard questions immediately
as predicted by our analysis. Why is that? The
GRE does in fact use the greedy algorithm, but
it also tries to satisfy certain constraints. For
example, no question is supposed to be seen by
more than 20% of test-takers. More importantly,
there is a constraint that each test “look like it
were designed by an expert test taker”, and so
the test biases itself towards certain “normal”
distributions of questions. For more, see [7, 5].

When designing a test, a lot more comes into
play than simple point estimation that we do
here. In particular, there are strategic aspects
involved. For example, one might want to prove
that no test-taker ever has incentive to inten-
tionally get a question wrong (in order to get
easier questions that he can then answer cor-
rectly). There are also fairness properties, such
as that if θ is sufficiently larger θ′ then θ is near-
guaranteed to outscore θ′ (i.e. our estimation of
θ should be near-guaranteed to be higher than
our estimation of θ′). However, most fairness
constraints seem to reduce to questions of bias
and variance in our estimator. For example, a
perfectly unbiased estimator of variance 0 – an
omniscient test – would necessarily mean all fair-
ness was preserved since estimation would corre-
spond exactly to reality.

9 Conclusion

Doing theoretical statistics on an online learn-
ing problem is a challenging ordeal. Because the
questions themselves as well as their answers are
highly interdependent, standard i.i.d.-focused re-
sults are hard to apply. There are many applica-
ble ideas floating out there on the issue – current
computer adaptive tests, multiplicative-weights

4

algorithms, noisy binary search, point estimation
theory – but marrying them together remains
a problem which will take more time to solve.
However, if that should prove intractable, there
are many strategic-type questions that could also
shed light on the issue. For example, our first
lemma suggested that users do not have incen-
tive to concentration preparation for either the
challenging or the easy questions. However, a
stronger statement would have to be proved in
order to account for the way in which answer
correctness actually affects the question set it-
self. Nonetheless, the algorithm we present here
seems like a promising direction for minimizing
the variance in an online computer adaptive test.

References

[1] Y. Freund Predicting a Binary Sequence Al-
most as Well as the Optimal Biased coin
Conference on Computational Learn-
ing Theory, 1996.

[2] H. Freund, R. Schapire A Decision-Theoretic
Generalization of Online Learning and an
Application to Boosting European Confer-
ence on Computational Learning The-
ory, 1995.

[3] H. Chang, Z. Ying A Global Information
Approach to Computerized Adaptive Testing
Applied Psychological Measurement,
1996.

[4] R. Karp, R. Kleinberg, Noisy Binary Search
and Its Applications. Symposium on Dis-
crete Algorithms, 2007.

[5] G. Schaeffer et al. The Introduction and
Comparability of the Computer Adaptive
GRE Test. ETS Report, 1995.

[6] M. Stocking, L. Swanson, and M. Pearlman,
Application of an Automated Item Selection
Method to Real Data. Applied Psycholog-
ical Measurement, 1993.

[7] M. Stocking, L. Swanson, A Method for
Severely Constrained Item Selection in Adap-
tive Testing. Applied Psychological Mea-
surement, 1993.

[8] W.J. van der Lin, E. Boekkoi-Timming, A
Maximin Model for Test Design with Practi-
cal Constraints. Psychometrica, 1987.

Table 1: Experimental Results

True θ, n MW (µ̂, σ̂) Gr (µ̂, σ̂)
0, [−5, 5], 3 -0.06, 1.948 -0.138, 1.965
−3, [−5, 5], 3 -2.851, 2.099 -2.9, 2.101
−5, [−5, 5], 3 -4.343, 1.181 -3.944, 1.181
0, [−50, 50], 3 -5.136, 14.81 -5.01, 117.544
−25, [−50, 50], 3 -26.44, 19.76 -22.04, 39.11
−50, [−50, 50], 3 -49.989, 0.121 -45.458, 20.65
0, [−50, 50], 10 -0.026, 1.021 0.164, 1.058
−25, [−50, 50], 10 -24.98, 0.905 -25.05, 0.911
−50, [−50, 50], 10 -49.65, 0.407 -45.65, 0.407
0, [−5.0, 5.0], 10 -0.073, 0.393 -0.163, 0.402
−2.5, [−5.0, 5.0], 10 -2.469, 0.416 -2.388, 0.429
−5.0, [−5.0, 5.0], 10 -4.67, 0.199 -4.60, 0.214

0, [−5.0, 5.0], 50 0.052, 0.082 -0.172, 0.087
−2.5, [−5.0, 5.0], 50 -2.464, 0.066 -2.508, 0.067
−5.0, [−5.0, 5.0], 50 -4.950, 0.031 -4.838, 0.040

5

