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Abstract 
 

Object tracking has been a hot topic in the area of 
computer vision. A lot of research has been undergoing 
ranging from applications to noble algorithms. However, 
most works are focused on a specific application, such as 
tracking human, car, or pre-learned objects. In this 
project, objects randomly chosen by a user are tracked 
using SIFT features and a Kalman filter. After sufficient 
information about the objects are accumulated, we can 
exploit the learning to successfully track objects even 
when the objects come into the view after it had been 
disappeared for a few frames. 
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1. Introduction 
 

Object tracking is useful in a wide range of 
applications: surveillance cameras, vehicle navigation, 
perceptual user interface, and augmented reality [1]. 
However, most of the research on tracking an object 
outperforms using selective algorithms that are applicable 
for fixed settings.  

The focus of this project is tracking a general object 
selected in a real time. The object to be tracked in a frame 
is chosen by a user. Scale Invariant Feature Transform 
(SIFT) features [2], point features that are highly 
distinguishable for an object, are used as a reliable feature 
to track with lack of initial training data. The motion of a 
selected object is learned assuming a Gaussian model by 
Kalman filter [3][5]. While tracking the object, more 
features are accumulated and the prediction made by 
Kalman filter becomes more reliable as more frames are 
passed. 

The rest of paper is organized as follow: Section 2 
presents the theoretical background about SIFT features 
and Kalman filter, the two most important ideas used in 
the tracking algorithm. The tracking algorithm is 
explained in Section 3 including the usage of SIFT 

features and Kalman filter in detail. Section 4 concludes 
the paper with possible future extensions of the project. 

 
2. Background 
 
2.1. SIFT Features 
 

SIFT [2] is an efficient way to find distinctive local 
features that are invariant to rotation, scale, and possible 
occlusion. To find SIFT features, you produce images in 
different scales. Each image is convolved with a Gaussian 
kernel, and the differences between adjacent scales of 
convolved images are calculated. Candidate keypoints are 
local maxima and minima of the difference. From the 
candidates, keypoints are selected based on measures of 
their stability. One or more orientations are assigned to 
each keypoint location based on local image gradient 
directions. The gradients at the selected scale in the 
region will represent the keypoints. The full description 
on calculating SIFT points and usage of them for 
matching images can be found at [2]. 

Since we do not have any prior knowledge of the 
objects, point features are used to represent and detect an 
object rather than texture, color or structure. 
 
2.2. Kalman Filter 
 

Kalman filter assumes Gaussian distribution of states 
and noise. Suppose x is the state, z is the measurement, w 
is process noise, v is measurement noise, and they are all 
Gaussian. The noises w and v are independent to states 
and measurements. Then we have [3][4] 

 
where P denotes the error covariance. 



Then, the Kalman filter estimates the state x of time 
k+1 and correct the prediction using measurement z of 
that time using the following equations, 

 
Time update (prediction): 

 
 

Measurement update (correction): 

 
 

The values with bar on the top are predicted value and 
K is Kalman gain. The full derivation of above equations 
is shown in [4]. 

 
2.2.1. Object tracking using Kalman filter To use 

Kalman filter for object tracking we assume that the 
motion of the object is almost constant over frames. The 
state variables, dynamic matrix and measurement matrix 
commonly used for 2D tracking can be found in [5]. 

 

 
 
3. Tracking Algorithm 
 

Figure 1 briefly depicts the basic steps of algorithm in 
connection with SIFT features and a Kalman filter of the 
object. As shown on the right side of Figure 1, we store a 
collection of SIFT features found and a Kalman filter that 
is used to predict the next location for each object. The 
information is kept even when the object is disappeared 
from frame, so that it can be reused when the object 
comes into sight in the future. 

The tracking algorithm begins when a user selects the 
object the object to track. The SIFT features found in the 
location of the object are stored. In the next frame, a 
Kalman filter makes prediction for a possible location of 
the object. The algorithm looks into either the location 
predicted by the Kalman filter or the identical location as 
the previous frame depending on how reliable the Kalman 
filter is. We use the prediction of Kalman filter when the 

prediction error is smaller than the pre-set threshold value. 
In the beginning of the algorithm, where we do not have 
enough information of the motion of the object, the 
identical location of the object as the previous frame is 
considered. The following step matches the keypoints 
between the candidate area of object and the stored SIFT 
features. The true location of the object is found from the 
location of matched keypoints and the measurement value 
is used to correct Kalman filter. From the location found, 
the algorithm continues on to the next frame repeating the 
same process. Figure 2 shows the screen shot while 
running the tracking algorithm. 
 

 
Figure 1 Algorithm flowchart Each step of algorithm interacts 
with the Kalman filter and the stored SIFT features of the object, 
shown on the right side. When the error of prediction is large, 
prediction is set to be the location of the object in the previous 
frame.  
 
3.1 The State Vector 

 

 
In the tracking algorithm, not only location but also 

size of the tracked object is estimated. As an extension 
from section 2.2.1, the width and height of the rectangular 



selection, and the velocity of change for the width and 
height are added as components of state vector.  

 
 

 
Figure 2 Screen shot of every 10 frames The objects are 
shown in green boxes, and SIFT features are shown in blue dots. 
A monitor and a mug are being tracked. 

 
The Kalman filter used for the tracking algorithm is a 

simple extension from 2.2.1 assuming the location (x, y) 

and the size (w, h) are independent. The assumption is 
reasonable in the sense that the direction of which the 
object is moving does not have a linear relationship with 
the width or height of the object. 
 
3.2 Measurement Using SIFT Features 
 

 
Figure 3 Transform of feature location from pixel 
coordinate to relative coordinate 

 
The coordinates of SIFT features are transformed into 

relative location of the feature to be used as means of 
finding location and size of selected object. As seen in 
Figure 3, we rescale the selection rectangle into square 
with length 1. The relationship between the stored 
coordinate (x’, y’) and the pixel coordinate (x, y) can be 
easily written as: 

 
Suppose we have a new frame, and we found matched 

feature with relative coordinate (x’, y’) from pixel 
location of (x, y) in the frame. If there are more than one 
matched SIFT features for the object, we can calculate X, 
Y, H, W by solving the least-square solution of following 
matrix equation. 

 
 

3.3. Change of Noise Model  
 
Although SIFT features are distinctive and result in 

reliable matching in most of times, SIFT feature can 
rarely pick a matching point that is similar (usually points 
within the same object) but not at the exactly same 
location. The predictions are not very reliable after the 
single mistake. To reduce the effect of the wrong 
matching point onto the Kalman filter, we will design a 
different noise model for measurement update: 

 
 



When α is close to 1 and R1 is small and R2 is large, 
the rare error can be dissolved into case of noise model N 
(0, R2). That is, the ordinary correct matching between 
SIFT features in two pictures corresponds to the noise 
model with low error (small R1 and α close to 1) while the 
rare mismatch case corresponds to the noise model with 
higher error (large R2), but low probability (1- α). After 
modifying the Kalman filter by the new noise model, the 
prediction is robust to wrong measurements. 

Full derivation of the modified Kalman filter 
equations with the new noise model (density filtering) is 
available in the Appendix A. 
 
4. Experiment 
 

As a standard to compare, I manually leveled tracking 
objects at each frame. The performance of the proposed 
algorithm and simple optical flow method are compared 
in the sense of relative error from the manual standard. 
Please note that the optical flow algorithm compared is 
rather naïve algorithm calculated only on the four corners 
of the selected region. There are more sophisticated 
approaches that we were not able to compare against due 
to time constraints. 

The optical flow works relatively well in the beginning, 
but the error blows up once it lost track of the object. The 
average performance measure is (error of proposed 
algorithm)/ (error of optical flow) = 0.4906. The plots 
comparing the two algorithms with different objects are 
shown in Figure 4. The large jump at the last frame for 
monitor (the second plot) and the mug (the third plot) are 
due to the fact that the objects moved out of the view. 

 
5. Conclusion and Future Works 
 

With SIFT features and Kalman filters to learn the 
motion, you can follow a general object that user selects. 
The nobility of the proposed algorithm is robustness in 
the cases when it loses track of the object. With higher 
resolution and more motion of camera involve, this work 
can further extended into finding the location of 
stationary objects as well as the odometer of camera. 
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Figure 4 Plots comparing performance of proposed tracking 
algorithm against optical flow 
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Appendix A. Density Filtering 
 

Suppose H is a deterministic matrix and U and N are 
independently Gaussian vectors. Then, the probability 
distribution of U given V is also Gaussian when V, U, 
and N are related as below: 

 

 
 
Now, suppose our noise model N is changed in 

accordance with random variable Z: 
 

 
 
The distribution of U given V is still Gaussian but the 

mean and the variance is changed. The mean is easily 
calculated: 
 

 
 
To calculate variance, we can use the law of total 

variance. 
 

 
 

The first term: 

 
 
Second term: 

 
 
The equations for modified Kalman filter that uses the 

new model for measurement update can be found by 
adequate substitutions of noise into the mean and 
variance found above. N is R, G is K, and P is the 
covariance. 

 

 
 
The hat means it is the value (Kalman gain, corrected 

state, posterior error covariance) of new noise model for 
measurement update. 


