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Abstract— Hidden-Markov Models (HMMs) have been widely
used for speech processing, understanding, and synthesis with
great success. The purpose of this work is to apply this prior
knowledge and investigate the effectiveness of HMMs on short-
duration percussive musical signals. Three main topics of interest
are investigated: isolated instrument recognition, isolated rhythm
transcription for the purpose of genre recognition, and isolated
instrument synthesis. Overall, satisfactory results were achieved
with clear motivation for improvement.

I. INTRODUCTION

ERCUSSION, drums, and other rhythmic acoustic signals

and patterns are an integral aspect of modern day music.
Entire music genres, careers, and extensive software appli-
cations are based off of rhythm or musical patterns through
time, providing a large motivation to learn and model such
information. More specifically, large databases of previously
recorded drum sounds are common place throughout the music
industry with little or no method of automatically labeling,
identifying, or searching with respect to musical parameters,
forcing manual searching with real-time auditory assessment.
To attack this issue and provide insight on such problems
as “search-by-rhythm” or “search-by-rhythm-genre”, isolated
instrument recognition, short-duration rhythmic recognition,
and isolated re-synthesis of acoustic drum set signals of typical
performance are investigated. To model the time-series infor-
mation of both the acoustic pressure information of the musical
samples as well as the rhythmic information of a musical
measure, continuous and discrete observation Hidden Markov
models are used respectively. Once the isolated instrument
recognition HMM models are complete, synthesis can be
performed using the learned HMM models. For an overview
of percussion transcription techniques see [1].

II. FEATURE VECTORS

With respect to the input feature vectors, the input time-
domain audio signals are converted to Mel-frequency cepstral
coefficients (MFCCs) [2]. Introduced in [3], MFCCs attempt
to more closely model the human auditory response, while
exploiting the decorrelating property of the cepstrum [4]. The
cepstrum of an audio signal can informally be defined as the
inverse Fourier transform of the logarithm magnitude of the
Fourier transform. The synthesis step (inverse transform) in
application actually uses the discrete cosine transform and
in [5] was shown to be effective in approximating principal
component analysis. Thirteen MFCC coefficients are generated

out of a 512-point FFT using .025 seconds windows overlap-
ping every .010 seconds. Ideally, the MFCC data effectively
captures a pitch-independent frequency response of the audio
signal over time. Using such feature vectors also allows for a
respectable synthesis of the instrument sounds.

IITI. ISOLATED RECOGNITION

To break down the problem of isolated acoustic drum set
recognition, six basis classes are used to represent each major
sub-instrument of a typical drum set (s = snare drum, b =
bass drum, h = hi-hat, t = toms, ¢ = cymbals, and si =
silence). Two-hundred audio samples for each basis class are
used for learning from a commercially available drum sample
database [6]. The EM (or in this context the Baum-Welch)
algorithm is used for learning the continuous observations
using a single Gaussian mixture model [7], [8]. To effectively
model the remaining combinations of drum sounds such as a
snare drum and bass drum played simultaneously (sb = snare
+ bass), combination data is created via random sampling,
adding together, and amplitude normalization from the basis
class audio files [9]. Using all physically realizable combina-
tions (no more than four simultaneous sub-instruments at a
time as well as silence exclusion) of the six basis classes, a
total of 28 overall classes were used. Additionally, the level of
combination of each class was identified with a corresponding
complexity level (basis class = 1, two added together =
2, etc). For each class, a 5-state left-to-right state-sequence
HMM model was generated. For recognition, a maximum log-
likelihood classification is used.
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Fig. 1. Continuous Observation HMM State Sequence

IV. RHYTHMIC TRANSCRIPTION FOR GENRE
RECOGNITION

Once each isolated recognition model is learned, musical
sequence or rhythmic recognition of audio files can be applied
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by using multiple instances of isolated recognition. The se-
quence or thythmic recognition must decode each event of the
sub-instruments or sub-instrument combinations. Specifically,
isolated recognition must be processed on each event within
the rhythmic drum pattern (typically one to two measures),
where an event occurs at every smallest division of musical
time or beat. Additionally, each rhythm data example must be
normalized with respect to time. Once time normalized, the
sequence recognition becomes straight forward and indepen-
dent of beat detection errors. Reason 3.0 with Dr. REX loop
player (a commercially available music production software)
was used to set a standard 120 beats per minute for each multi-
measure example of a standard 4/4 time signature with 16th
note quantization (i.e. for a two measure pattern, 32 isolated
recognition classifications well be made). For training and
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Fig. 2. Isolated Recognition for Every 16th Note Division

testing purposes, a small collection of fifty rock rhythmic pat-
terns and fifty hip-hop patterns (previously defined by genre)
were decoded into discrete events consisting of the isolated
recognition classes. Once the decoded instrument patterns are
generated, the data can then be used to model the rhythmic
characteristics of the respective genre. A discrete-observation
(28 class) HMM model can then be used to classify using
a maximum log-likelihood approach. The two-class dataset
illustrated significant results considering the minimal number
of examples. See Results
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Fig. 3. Discrete Observation HMM State Sequence

V. SYNTHESIS

Independent of the rhythmic transcription, the isolated basis
class HMM models can be used to re-synthesize audio wave
forms. The trained HMMs and an optimal state sequence can
generate the modeled MFCC parameters using the expected
value observations for each state. Unfortunately, while the
MEFCC features give an approximate form of the frequency
transfer function of the audio signals, difficulty arises when
attempting to invert the MFCC process (all phase information
of the signal is lost by taking the logarithm of the magnitude).

As a result, a source-filter model can be used with a shaped-
noise input signal to excite the synthesized parameters [10].
Pink noise (filtered white noise) is used as the excitation and
convolved with the frequency response parameters (MFCCs)
for the final output audio signal. Pink noise can be defined
by a power spectral density proportional to the reciprocal of
the frequency. The overall synthesis model can be illustrated
in fig. 4, similar to [11]. Each time window of MFCC data
essentially acts as a dynamic filter, shaping the spectrally flat
(or sloped) noise. Ideally, the generated state sequence can
be used to parametrically control the synthesis of the audio
waveform such as controlling the attack, decay, sustain, and
release parameters of the drum signals. The parameters of the
synthesis were unfortunately difficult to control with respect
to auditory evaluation due to the transient behavior or drum
signals (this is not the case for the typical speech application).
Moreover, numerous HMM models of varying state sequence
lengths were used with little noticeable improvement. Overall,
a S-state sequence was used.
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VI. RESULTS

Overall results proved moderately successful. The following
will be a presentation and discussion of the results for the iso-
lated recognition, rhythmic transcription for genre recognition,
and synthesis. For all confusion matrices, the rows represent
the known correct classification, while the columns represent
the predicted classification.

A. Isolated Recognition

With respect to isolated recognition, two main training and
testing schemes were implemented. Initially, 10-fold cross-
validation was used on the six basis class (200 examples/class)
HMM models only. Very accurate results were obtained. See
the confusion matrix in fig. 5. After basis class verification,
10-fold cross-validation was used to train/test all 28 classes to-
gether and can be seen in fig. 13. Unfortunately, classification
accuracy greatly decreases as the complexity level increases,
making musicological analysis of the rhythm transcription less
useful. The misclassifications, however, are typically educated
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Confusion Matrix (%)
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Fig. 5. Basis Class Confusion Matrix (%)

in some manner (i.e. a snare drum gets misclassified as a
snare + bass drum) and can be interpreted as resonances of the
basis classification. A general analysis of the complexity vs.
classification accuracy result can be seen in fig. 9. See fig. 13
for a confusion matrix of all classification.
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Fig. 6. Complexity vs. Classification Accuracy

B. Rhythmic Transcription for Genre Recognition

Although the performance of the isolated recognition sig-
nificantly decreases with complex instrument combinations,
accurate genre recognition using sequential isolated recogni-
tion was obtained. Using leave-one-out cross-validation and
the minimal database of fifty hip-hop and fifty rock classified
two-measure audio files, genre-classification by rhythmic tran-
scription provided around 76-80% classification accuracy. See
the confusion matrices for multiple tests using varying state-
sequence lengths. It should be noted that a large improvement
on the classification accuracy should result with a significantly
larger database, providing promise for rhythm-based genre
recognition.
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C. Synthesis

Recognizable synthesis was achieved and can be seen by
comparing the original energy, time-domain, and spectrogram
data to the optimal state-sequence synthesized data. The
synthesis, however, proved quite difficult to control using the
simplistic synthesis model shown in fig. 4. Additionally, the
limited frequency range of the MFCC coefficients severely
limited the quality of the synthesized sounds. Unfortunately,
increasing the feature vectors limits the overall accuracy of
HMM model due to the limited size of data. Moreover, the
MFCC data does little to model time-domain information
which is critical for modeling the transient behavior of drum
signals. An attempt to integrate the delta and delta-delta
MFCCs was made with little success due to the limited
database size. Increasing the dataset size and adding significant
features such as time-domain volume envelope information
should significantly increase the behavior for synthesis. See
figures 10, 11, 12 below for an example of a synthesized
hi-hat drum sound (see http://ccrma.stanford.edu/~njb/cs229
for sound examples). The state-sequence transitions can be
visibly seen through the abrupt changes in each plot of data
over time. When comparing sound quality between the isolated
instrument synthesis sounds, the hi-hat and snare instruments
proved the most effective because of the more noise modeled
sound. The tom drum and bass drum proved to be more
difficult and require a refined excitation signal.

VII. CONCLUSIONS

Overall, satisfactory results were achieved. Isolated recog-
nition and rhythmic transcription or sequential isolated recog-
nition for genre classification illustrated significant promise
with little future refinement making search-by-rhythm a pos-
sibility for future revision. Unfortunately, the HMM synthesis
proved to be quite difficult and exhibited a large need for
improvement with respect to the signal processing synthesis
model. Moreover, increasing the dataset size will be needed
and should significantly improve the synthesis model as well
as the isolated recognition.
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Confusion Matrix (%)
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Fig. 13. All Class Confusion Matrix (%)



