
Submitted by Brian Sa and Patrick Shih for CS229 Fall 2006

K-MEANS FOR NETFLIX USER CLUSTERING

I. Introduction and model

In the Netflix collaborative filtering problem, the goal is –

given a set of training data (){ }iiii rtmux ,,,= consisting of

a sample of prior movie ratings ir (an integer from 1 to 5)

associated with user iu , movie im , time it – to

accurately predict the rating that should be associated

with a new point ()mu, . As part of a larger Stanford

effort, we seek to use k-means to cluster users with

similar movie preferences.

Intuitively, this means that users have intrinsic user types

wherein all users of that type have aligned preferences

across all movies, and furthermore that individual user

vectors of that type reflect choosing from some unknown

distribution specific to the user’s class. The variance of

ratings for any particular movie for users within a class

can be interpreted as the natural variation of user ratings

given known absolute preferences for a movie. As

opposed to the Mixture of Multinomials group (c.f.

project by Dimitris, Hau Jia, and Raylene), we make no

assumptions about the underlying model other than the

most basic premises: that users rate movies in a

predictable way and that for a given user, different movie

ratings are not all conditionally independent.

More formally, each user has a vector of ratings over all

movies
n

x ℜ∈* which comprises the hypothetical

ratings that the user would rate each of the 17770

movies in the Netflix library. The Netflix prize ratings

database provides incomplete user vectors,
di

x ℜ∈)(

with nd ≤ , that are the projections of the complete user

vectors x(i)* onto some arbitrary lower dimension d. It is

usually the case that d << n, with an average across the

training set of ≈d 200. Furthermore, d varies with each

user i as it is not the case that all users have rated the

same number of movies nor have all users rated the

same set of movies.

Our original motivation in pursuing k-means was to

perform linear regression within clusters, although the

scope of clustering a dataset of this scale and sparsity

proved enough of a challenge. K-means is also an ideal

unsupervised method for classifying users in the vast

Netflix data set because it converges extremely quickly

in practice.

The method of k-means as applied to incomplete user

vectors x(i) ’s is as follows:

1.) Initialize cluster centroids by one of two methods:

a. Assign
)()2()1(,...,, kµµµ to k randomly chosen

x(i) ‘s.

b. Or use the heuristic described in the k-means++

paper†

2.) Repeat until convergence:

a. Let),(maxarg:)()()(ji

score
j

i
xfc µ= for all i,

where ()scoref is a scoring function described in

more detail later.

b. For each j, let

∑

∑

=

=

≠=

⋅=

=
m

i

i

l

i

m

i

i

l

i

j

l

xjc

xjc

1

)()(

1

)()(

)(

}0ˆ,{1

ˆ}{1

µ

for l = 1, …, n;
ni

lx ℜ∈)(ˆ is x(i) projected from

nd a , with all added dimensions padded with

0’s, in effect ignoring incomparable ratings

where either the centroid or the user is missing a

rating for movie l.

The objective maximized in this case is:

∑
=

=
m

i

ci

score

i

xfcJ
1

)()(),(),(
)(

µµ

For comparison, the traditional method of applying k-

means to a sparse data set is to fill in missing vector

elements with default values. Furthermore, k-means is

typically formalized as minimizing a distortion function

that represents either the angle between vectors (cosine

similarity) or the Euclidean distance:

∑
=

−=
m

i
c

i

ltraditiona ixcJ
1

2

2

)(
)(),(µµ

†
 Arthur, David and Vassilvitskii, Sergei. “k-means++: The
Advantages of Careful Seeding.” To appear in SODA 2007.

Submitted by Brian Sa and Patrick Shih for CS229 Fall 2006

Figure 1. Left: a graphical depiction of a cluster; movie id’s are on the y-axis; users along the x-axis; *’s represent the presence of a rating
for a particular user and movie. Right: a typical distribution of clusters; k=30; number of users = 480; scoring function used was MMP
continuous (see below)

We will explain why this cannot be applied to the Netflix

data set (without some tweaks) in the section on scoring

functions.

Movie rating distribution

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800 900 1000

Number of rat ings

N
u
m
b
e
r
o
f
m
o
v
ie
s

Figure 2. Data set size. 480,000 users. Scoring function. MMP
continuous. k=10. Notes. Shown is the distribution of one
cluster. The tail of the distribution is not shown.

 II. Parameters:

The parameters investigated in this project are the

number of clusters k, heuristic initialization (h), and the

scoring function ()scoref .

II.a. The effect of heuristic initialization (h)

The k-means algorithm is dependent on the initial

centroids and as such is not guaranteed to discover the

global optimum. That is, the quality of the clusters, as

quantified by the objective function described earlier, is

highly variable for different trials. A common method to

overcome this is to run the algorithm multiple times with

different initial centroids and return the best clustering

found. Since clustering on the complete Netflix data set

is computationally expensive, it is beneficial to start with

clusters chosen by some heuristic so as to speed up

convergence while also guaranteeing the quality of the

resulting clusters.

%(Size) is the number of users in the cluster
%(Span) is the number of ratings spanned by all users in the cluster
%(Overlapping) is the number of ratings rated on by two or more users
%(Outcasts) is the number of users who share no movies in common with other users
%Result of KMeans with k = 30 run on training set 1000x_smaller_training_1.dat
Cluster Size Span Overlapping Outcasts

0 18 1304 314 2

1 9 721 26 0

2 20 2094 962 0

3 14 730 127 0

4 30 3638 1879 0

5 1 995 0 1

6 12 1406 315 0

7 16 733 179 0

8 24 996 318 0

9 21 2626 1246 0

10 14 1396 334 0

11 16 1566 460 0

12 19 2738 1386 0

13 11 654 128 1

14 6 869 153 0

15 16 2174 967 0

16 4 691 17 0

17 36 3289 1760 0

18 15 2625 750 0

19 11 793 131 0

20 44 3168 1448 0

21 12 834 183 0

22 15 1338 374 0

23 10 786 213 0

24 6 939 107 0

25 36 2898 1709 0

26 3 1375 86 0

27 21 2720 1269 0

28 11 1899 467 0

29 9 740 138 0

Examining cluster 20... Number of users: 44
 6: *

 8: * *

 18: *

 28: * *

 30: * * * * ** ** * * *

 38: *

 39: *

 44: *

 52: * *

 55: *

 58: *

 77: *

 81: *

 83: *

 84: * *

 97: *

 108: * * *

 111: ** * *

 113: *

 118: *

 138: *

 143: * * *

 148: * * *

 166: *

 175: * * * * * **

 176: *

 181: *

 187: * *

 189: *

 191: * * * * * ** ** * ***

 196: *

 197: ** * *** * * * *

 199: * * * *

 209: *

 216: *

 241: * * * *

 246: *

 248: *

 …

Submitted by Brian Sa and Patrick Shih for CS229 Fall 2006

Heuristic initialization as described in the k-means++

paper† was implemented for these purposes. At least in

theory, carefully choosing initial centroid values has the

advantages of reducing the number of iterations until

convergence and of guaranteeing a clustering that is

relatively consistent when repeated. The heuristic assigns

the first centroid by choosing a user randomly. For each

successive centroid, it chooses a user with probability

proportional to its Euclidean distance to centroids that

have already been assigned. The motivating idea is to

choose centroids that are maximally distinguished from

each other leading to more meaningful clusters on the

first iteration. The results are compared with the

standard method of initialization whereby k user vectors

are selected randomly from the data set and used as the

initial centroids.

Effect of k++ heuristic initialization

0

5

10

15

20

25

30

5 10 15 20 25 30

Number of clusters (k)

It
e
ra
ti
o
n
s
 u
n
ti
l
c
o
n
v
e
rg
e
n
c
e

random
initialization

k++
heuristics

Figure 3. Data set size. 4800 users. Scoring function. MMP
continuous. Notes. Number of iterations capped at 25. Each
data point is the average over 5 trials run on different data sets.

According to the data (Figure 3, 4), k++ heuristic

initialization decreases the number of iterations until

convergence for all k and m. This implies that the

heuristic starts the algorithm off with centroids closer to

ideal than a random selection of users.

†
 Arthur, David and Vassilvitskii, Sergei. “k-means++: The
Advantages of Careful Seeding.” To appear in SODA 2007.

Number of iterations until convergence

0

5

10

15

20

25

30

35

40

45

48 480 4800 48000

Number of users

It
e
ra
ti
o
n
s

Figure 4. Scoring function. MMP continuous. Notes. Each data
point is the average over 3 trials run on different data sets.

II.b. Choosing the right scoring function f
score

()

To preamble our discussion of scoring functions, we will

start by explaining why the traditional method of filling

incomplete vectors with default values fails in this

application. Density (or sparsity, as is the case here) of

the training data determines the ratio of default values to

actual ratings. For the Netflix data set, which is

approximately 1% dense, there are about 100 default

values for every actual rating. Depending on the size of

the training set m and the number of clusters k, the

centroid vectors are filled with a significant proportion of

default values unless m is large or k is small. This allows

comparisons between two default values, which

represent the maximum similarity attainable by either

Euclidean distance or cosine similarity. Since scoring

functions like Euclidean distance or cosine similarity

make no distinction between faux values and real values,

the resulting signal to noise ratio is very low. The

number of such comparisons between default values is

related to the density of the centroid, a measure of which

can be found in a statistic we call the span. The span

represents the number of movies in a cluster that have

been rated by at least one person. Even if an attempt is

made to improve the signal to noise ratio by decreasing

the weight of default values, a significant problem still

remains. It turns out that user vectors will always try to

maximize the number of comparisons between default

values since these achieve perfect similarity, i.e. result in

Submitted by Brian Sa and Patrick Shih for CS229 Fall 2006

a Euclidean distance of 0 or a cosine similarity of 1.

Thus, unless the span covers virtually the entire set of

movies, the clustering is utterly useless (see figure 1 for

a typical clustering using k-means with default values).

The modification to k-means as implemented in this

paper can be viewed as assigning a similarity score for

each pair),ˆ()()(j

l

i

lx µ . Non-comparable pairs – which

will be defined in this context as any pair where either
)(ˆ i

lx ,
)(j

lµ , or both are missing – are given a similarity of

0. On an intuitive level, this represents the default

condition whereby no inferences about similarity can be

drawn. Then for comparable pairs, the scoring function

returns a value that rewards (a positive similarity) for

rating differences within a certain threshold, and returns

a value that penalizes (a negative similarity) for rating

differences that exceed the threshold.

Four scoring functions were evaluated for clustering

quality and secondarily for the root mean squared error

(RMSE) of predictions made. The prediction for user i at

movie j, given by *)(i

jx , is calculated by using the

closest centroid’s rating,
)()(i

c

jµ , if it exists, or resorting

to an average rating calculated over the entire data set

(an average adjusted by the average over the user and

the average over the movie).

II.b.i. Mismatch penalty (MMP) using a discrete scoring

function

The problem of matching sparse user vectors to ideal

clusters is analogous to that of sequence alignment for

DNA or RNA. In the case of sequence alignment, a given

pair of bases under consideration can be assigned a

score via a scoring matrix, which contains a pre-

enumerated grid of all permutations of the 4 possible

bases with scores reflecting their similarity or affinity. In

protein sequence alignment substitution matrices like

PAM or BLOSUM serve the same purpose for scoring

evolutionary sequence divergence. Drawing our

inspiration from these methods, we wrote our own

scoring function that takes as input the absolute value of

the difference between a user rating and a centroid

rating, discretizes it to integral values, and returns as

output a number reflecting the similarity of the two

ratings. The crucial insight we made was to treat the

non-comparable case as a baseline from which to reward

for small mismatches and penalize for large mismatches.

The motivation behind a discretized scoring function is

to compensate for the granularity of user ratings. That is,

if for example the centroid rating is 3.5, the user rating

(an integral value) can be at best 3 or 4, yielding an

absolute difference of 0.5. A scoring function that is

discretized in the same increments as the user ratings

returns consistent scores even if the centroid ratings

fluctuate somewhat.

−→<−
−→<−
−→<−

→<−

=

204ˆ
103ˆ
52ˆ

11ˆ

),ˆ(

)()(

)()(

)()(

)()(

)()(

j

l

i

l

j

l

i

l

j

l

i

l

j

l

i

l

j

l

i

leMMPdiscret

x

x

x

x

xf

µ
µ
µ
µ

µ

MMP Discrete

0.95

1

1.05

1.1

1.15

1.2

1.25

10 20 30 40 50 60 70 80

Number of clusters (k)

R
M
S
E Training

Testing

Figure 5. Data set size. 4800 users. Scoring function. MMP
discrete. Notes. RMSE for predictions made both within and
outside of span. Each data point is the average over 4 trials run
on different data sets.

II.b.ii. Mismatch penalty (MMP) using a continuous

scoring function

Although discretization works quite well, it also has its

disadvantages, namely that the arg-min of a step-

function is a range, rather than a single value.

Theoretically, this translates to a “looser” clustering,

since a difference in ratings of as much as 1 is tolerated

(or more accurately, rewarded). An ideal continuous

Submitted by Brian Sa and Patrick Shih for CS229 Fall 2006

scoring function would address this shortfall while

maintaining the characteristics of the mismatch penalty

scoring system.

2)1ˆ(),ˆ(2)()()()(++−−= j

l

i

l

j

l

i

lousMMPcontinu xxf µµ

This scoring function was constructed to fit the following

specifications: 1) it must return 1 if the scores match

exactly, 2) it must assign a negative penalty for any

absolute difference exceeding 1.0, and 3) it must assign

increasingly negative penalties for larger absolute

differences. It is interesting to note that as originally

constructed, ()ousMMPcontinuf was a cubic function;

however, this proved too penalizing for large absolute

differences in ratings and the algorithm did not converge.

The MMP Continuous scoring function was in fact able to

achieve tighter clusters, as can be seen from its testing

RMSE for k=50 (Figure 6). However, it was also sensitive

to values of k that were too high.

MMP Cont inuous

1.05

1.1

1.15

1.2

1.25

1.3

0 20 40 60 80 100

Number of clusters (k)

R
M
S
E training

testing

Figure 6. Data set size. 4800 users. Scoring function. MMP
continuous. Notes. RMSE for predictions made both within and
outside of span. Each data point is the average over 4 trials run
on different data sets.

III. Discussion

The ultimate goal of the Netflix prize is to minimize the

RMSE for predictions. However, it is evident that k-

means as the sole method for rating prediction, as

compared to the current leading predictive algorithms, is

limited at the current values of k and m (number of

users). We expect that prediction will improve

significantly as k and m increase (k > 1000 on all

480,000 users) because specificity increases

proportionally to k. Further, the sparsity of the data

places a constraint on the minimum size of a cluster. We

must ensure a sufficient span to make valid predictions.

Thus, increasing k requires a proportional increase in m.

If indeed a high value for k is required for optimal

prediction, this implies that current values of k will have

high bias, and this is borne out. The training error and

generalization error on k-means run for constant k=10

and increasing m indicate that our algorithm is

underfitting the data.

Training and generalizat ion error

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

10 100 1000 10000 100000

Number of users

R
M
S
E

Training error

Generalization
error

Figure 7. Scoring function. MMP continuous. Notes. RMSE
calculated for predictions within the span of the centroid. Each
data point is the average over 3 trials run on different data sets.

IV. Future work

Continuing forward, a short term goal is to tune the

parameters of the MMP Continuous scoring function for

optimal clustering. Long term goals include proceeding

with linear regression within clusters and utilizing

information contained in movie content (such as from

www.imdb.com) to improve performance.

V. Acknowledgements

We would like to acknowledge Ted Hong and Dimitris

Tsamis, our collaborators, and the entire Stanford Netflix

prize team, led by Tom Do and Thuc Vu. Additional

thanks to Tom Do for his assistance in writing a version

of k-means utilizing MPI.

