
Learning Projections for Hierarchical Sparse Coding 
 

Chaitu Ekanadham, David Ho, Daniel Wagner 
CS229 Final Project 
2006 December 15 

 
Abstract 

 
Olshausen and Field (1996) suggest a method for learning a set of Gabor-like bases that activate 
sparsely to reconstruct natural images. We extended this approach by learning a sparse 
representation of these filter activations using an adapted version of the sparse coding algorithm 
(TISC). We trained our models on a simplified dataset with three shapes, and then on a subset of 
the Caltech 101 dataset. We found that for the shapes data, SVM classification accuracy improved 
when using either the first or second layer responses compared to the original images, while for 
the Caltech data, only the first layer yielded improvement. We also attempted to learn a projection 
of the first layer responses for the Caltech data to use for learning a second layer, but the algorithm 
failed to converge. We discuss reasons why this may have occurred, and also evaluate all 
representations that we learn by applying SVM classification. 

 
Background 
 
Sparse Coding 
 
Sparse coding theory has met with much success as a functional model for neurons in primary visual cortex. The 
theory stems from the landmark result in Olhausen & Field’s paper (1996) demonstrating that the response 
properties of V1 simple cells can be learned by training a model that represents a static natural image as a linear 
combination of some set of basis images. The objective function to be minimized is: 
 

f = ||X – B1S1||22 – ||S1||1
 
where X is a vector containing the original image data, BB1 is the matrix containing the basis images as columns, and 
S1 is a vector containing the coefficient values (activations) for each basis. Thus, B1B S1 is the model’s reconstruction 
of the image X, and so the first term in f represents reconstruction error, while the second term measures the 
sparseness of the coefficient values S1 by taking its L1 norm. 
 
Hierarchical Sparse Coding 
 
We focus on the problem of extracting higher-level features of images by learning a second layer of sparse-coding 
bases on top of the first-layer activations. One desirable property of high-level features is their invariance to small 
transformations, such as rotation or scaling. (Ultimately, of course, it would also be nice if this hierarchical sparse-
coding could more accurately model higher levels of biological visual processing, or improve SVM classification 
accuracy over first-layer sparse coding alone.) Unfortunately, we can expect that a naïve strategy – using the first 
layer activations directly as input to a second layer of sparse coding – will not allow us to achieve this kind of 
invariance. Because of the sparse nature of the first-layer activations, slight transformations of the original image are 
likely to activate completely different bases in the first layer. Thus, the first-layer representations of the original 
image and the slightly-transformed image might appear mostly uncorrelated to the second-layer algorithm, making it 
hard to learn a “transformation-invariant” second-layer representation for both images. 
 
Distance Metric Learning 
 
Our approach to this problem is to transform the first layer activations using some linear projection, before applying 
the second-layer sparse coding algorithm on the transformed data. Here, the objective function would look like: 
 

f = ||X – B1S1||22 – ||S1||1 + ||WS1 – WB2S2||22 – ||S2||1
 



where X,BB1, and S1 are as above, B2B  is the matrix with second layer bases as columns, S2 are the coefficients of the 
second layer bases, and W represents some projection matrix. Note that the third term represents the squared 
difference between the projections (by matrix W) of the first layer outputs (S1) and the second layer reconstruction of 
these outputs (B2S2), which can also be written as ||S1 – B2S2||W2. Intuitively, we would like to learn a projection W 
that maps images of the same object to be “close together,” and images of different objects to be “far apart”. 
Presumably, a good projection might allow us to achieve some degree of invariance with the second layer of sparse 
coding, as well as better image classification with both layers. 
 
Conveniently, Eric Xing (2003) suggests a supervised-learning algorithm to learn such a projection. Given a matrix 
of similarity and dissimilarity judgments, this “distance metric learning” algorithm can learn a “distance metric” W 
that assigns small distances to pairs of images a human would judge as “similar”, and large distances to pairs of 
images a human would judge as “dissimilar.” (For classification tasks, we can simply label all images in the same 
category as similar to each other, and dissimilar to images in different categories.) 
 
The algorithm is summarized in Error! Reference source not found.. It takes an initial guess for the distance 
metric, and then iteratively projects it to ensure that it satisfies both constraints (intuitively, the two constraints are: 
maximizing the distance for dissimilar pairs and keeping the distance for similar pairs under 1, and keeping the 
distance metric in the set of positive semi-definite matrices). 

Table 1: Distance metric learning algorithm of Xing et al. (2003). 

Optimization Problem 
 

Algorithm 

 

 
Key: A: distance metric; S: set of all similar pairs of data points; D: set of all dissimilar pairs of data points 

xi: data point; ||.||F: Frobenius norm; 
C2: positive semi-definite matrices; *: convolution operator 
S(i,j): array with the activations of basis j to image i at each point. 

C1:  
 
Indeed, in his paper, Xing demonstrates that the supervised distance metric learning algorithm can be used as a 
preprocessing step to increase the effectiveness of unsupervised clustering algorithms. In our experiments, we 
address the question of whether distance metric learning can be applied to learn an appropriate projection matrix that 
can be coupled with sparse coding to yield representations that lend themselves easily to accurate classification. 
 
Experiments and Results 
 
Methods 
 

Figure 1: original data from shapes dataset (left) and Caltech dataset (right) 

We ran our experiments on two datasets. The first (87 images) consisted of 29 rotations of each of three hand-drawn 
shapes: a circle, a triangle, and a rectangle. The images from each class were rotated in 0.5-degree increments, from 
-7° to 7°. We started with this dataset because it made it easier to understand the features extracted by the second 
layer bases, and because we wanted to see whether the projection matrix and second layer could achieve some 
degree of rotational invariance (and therefore higher SVM classification accuracy). Our second dataset (60 images) 
consisted of 20 images from each of three randomly-chosen categories from the Caltech 101: faces, motorbikes, and 
starfish. Sample images from each of these datasets are shown below in Figure 1. To evaluate our results 
quantitatively, we fed the representations of the images at each stage into a linear-kernel support vector machine, 
and reported the classification error with leave-one-out cross validation. 
 



Since we knew that first-layer basis learning produces bases very similar to Gabor filters (Honglak Lee, personal 
correspondence), and since our true aim was to evaluate the projection matrix and the second layer, we chose not to 
learn the first-layer bases from scratch. Instead, we used six Gabor filters as reasonable approximations for the first-
layer bases that would have been learned (Figure 2). We then used the translation-invariant sparse coding algorithm 
developed by Roger Grosse to generate a reconstruction of the images using these bases (Figure 3). Translation-
invariant sparse coding is similar to the vanilla sparse coding algorithm, except that it constructs an image using all 
possible translations of the basis set. The modified objective is shown in Equation 1. 
 
 

Figure 2: Gabor filters for 1st layer 

 
 
 
 
 
 
 
 
 

 
 
 
Shapes 
 
To establish a baseline for the distance metric and second-layer sparse coding, we first learned the second-layer 
bases directly on top of the first-layer activations. Figure 4 shows the second-layer bases for the geometric data set. 
Each colored pixel represents a corresponding first-layer basis at that location; the intensity of the color represents 
the coefficient for that first-layer basis. The bases for the shape data clearly show some high-level features that are 
closely related to the original pictures, such as circular shapes and edges. 
 
 
 
 
 
 
 
 
 
Interestingly, on the shape data, we found that the classification error was already quite low on the raw images 
(16%), and it dropped to zero after the first layer, with or without the distance metric (Table 2). While this validated 
the utility of first-layer sparse coding, it did not shed light on the usefulness of the distance metric and second layer. 
Moreover, the distance metric learned on the first layer responses was very close to the identity matrix. 
 
The fact that distance metric learning returned a matrix close to I, combined with the fact that classification 
performance hit ceiling so early, suggested to us that we should consider more complex data: perhaps the distance 
metric learning didn’t need to project the first-layer representations very far, simply because they already so well 
clustered. Thus, we turned to the Caltech image set. 

Figure 3: First layer reconstructions of shapes 
(1st row) and Caltech images (2nd row) 

Equation 1: TISC objective function 

Figure 4: 2nd-layer bases for shapes dataset 



Caltech 
 
Again, we learned the second-layer bases directly on top of the first layer, as a baseline. The bases for the Caltech 
data (Figure 5) are, of course, more difficult to interpret, so we moved on to the quantitative analysis (Figure 8). 
 

Figure 5: 2nd-layer bases for Caltech data 

 
 
 
 
 
 
 
 
Again, compared to the raw images, using the first layer responses yielded a huge decrease in classification error 
(from 0.87 to 0.15). On this dataset, though, running second-layer sparse coding directly on the first layer actually 
decreased performance. Even so, we still hoped that the distance-metric learning could improve the accuracy. 
 
Unfortunately, learning a distance metric on the first layer activations of the Caltech images proved to be a fragile 
process. The step in the algorithm that projects a guess of the distance metric onto the constraint sets C1 and C2 
failed to converge in a reasonable number of iterations. As a result, the learned metric was again very similar to the 
initial guess. In the end, after the first layer, very few of the other manipulations seemed to help at all.  This is likely 
to be due to the fact that the distance metric algorithm did not converge properly on the first-layer data. 
 
Analysis 
 
We verified our result in several ways: 
 To ensure that the algorithm was failing to learn, (and that the identity matrix was not, in fact, the “best 

answer”), we initialized the algorithm once with the identity matrix and once with a random positive semi-
definite matrix. In both cases, the learned metric was very similar to the initial guess. 

 Furthermore, to rule out the possibility of a bug in our implementation, we tested it on hand-generated Gaussian 
data in two dimensions. It produced a reasonable result, and moreover, the objective function increased with 
each iteration of the outermost loop (Table 1). With our actual data, we had been unable to see whether the 
objective function increased with each iteration of the outermost loop, because the algorithm’s convergence 
criterion is based on the difference between the guess for the distance metric on the previous iteration, and the 
new guess after iteratively projecting to satisfy constraint sets C1 and C2. Since the algorithm repeatedly failed 
to find a suitable projection simultaneously satisfying both constraints, the final result was very close to the 
original result, and the algorithm halted. 

 
Therefore, we propose a few possible reasons for the algorithm’s failure in our case: 
1) The high dimensionality of the data (D = 1734 for the first layer responses), which could make a very high 

number of training examples necessary.  In fact, the metric for which we are optimizing has size D2. Indeed, 
Xing et al. (2003) had only tested the algorithm on data sets with dimensionality of up to thirty. 

2) The robustness of the sparse coding algorithm, which could potentially output activations which represent 
significantly different data in significantly different ways under a high variety of simple transformations. 
Perhaps the distance metric learning code was unable to find appropriate projections for sparse, high-
dimensional data. 

 
Despite the fact that the distance metric learning failed to converge, we used the result to learn a second layer of 
bases.  To transform the first-layer activations, we multiply by a matrix A such that ATA is the learned distance 
metric. The results are shown below for both initializations (Figure 6 and Figure 7). 
 
 

Figure 7: 2nd-layer bases on Caltech data, with 
distance metric initialized to random PSD matrix 

Figure 6: 2nd-layer bases on Caltech data, 
with distance metric initialized to I 



Classification results 
 
We fed the following as input to a standard SVM classifier: 

1. original images (both datasets) 
2. first layer responses (both datasets) 
3. second layer responses without distance metric applied (both datasets) 
4. first layer responses with distance metric applied (Caltech 101 only) 
5. second layer responses learned with distance metric (Caltech 101 only) 

For parts (4) and (5) we used 4-fold cross validation. The results for the shapes data is shown in Table 2.  Also 
shown are the results on the Caltech data (Table 3 and Figure 8). 
 

Table 2: Shape classification errors 

  Triangles Rectangles Circles Overall 

Baseline 0.4828 0 0 0.1609 

First layer 0 0 0 0 

First layer with 
distance metric 

0 0 0 0 

Second layer 0 0 0 0 

 
 
 
 
 
 
 
 
 
 
 

Baseline

0
0.2
0.4
0.6
0.8

1

Error

1st layer
2nd layer
1st layer + (eye) DM
1st layer + (rand) DM

F a c e s M o t o r b i k e s S t a r f i s h T o t a l

Shapes2nd layer + (eye) DM
2nd layer + (rand) DM

 
 

Figure 8: Caltech classification errors 

Conclusions 
 
Our initial reaction was that naïvely applying the sparse coding algorithm to the first-layer activations would not be 
useful. While this turned out to be true, this is likely to be a testament to the effectiveness of the first layer of sparse 
coding rather than to our ingenuity and insight. All our tests indicate that the first layer is so effective than any post-
processing only detracts from classification performance. At the very least, we can say that neither the simple-
minded approach nor the distance-metric learning approach outlined here are appropriate next steps. We hold out 
hope, however. Sparse coding is a linear transformation of data, and so is applying a distance metric. Combining 
two linear transformations yields another linear transformation, and this may perhaps explain the uselessness of 
using the metric we learned. Yet there may be some nonlinear post-processing step that could allow a second layer 
of sparse coding to learn a more interesting set of features, and ultimately improve our understanding of vision. 
 
References 
 
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse 

code for natural images. Nature, 381, 607–609. 
Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning with application to 

clustering with side information. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural 
Information Processing Systems 15, pages 505–512, Cambridge, MA, 2003. MIT Press. 

Yang, L. (2006) PhD thesis. Distance Metric Learning: A Comprehensive Survey. Department of Computer Science 
and Engineering, Michigan State University. 



 

Appendix: Caltech classification errors 

 
Table 3: Caltech classification errors 

  Faces Motorbikes Starfish Overall 

Baseline 1 1 0.6 0.8667 

1st layer 0.35 0.1 0 0.15 

2nd layer 0.75 0.7 0.65 0.7 

1st layer + (eye) DM 0.65 0.1 0 0.25 

1st layer + (rand) DM 0.6 0.1 0.15 0.2833 

2nd layer + (eye) DM 0.85 0.6 0.65 0.7 

2nd layer + (rand) DM 0.5 0.8 0.7 0.6667 

 


