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1. Introduction
With the growth of modern cities and the reliance of many of their populations on personal 

automobiles for the primary mode of transport, finding improved means to control the flux of 
vehicles has grown increasingly important. There are substantial benefits to be derived from 
improved traffic flow. For many commuters, reclaiming part of their day would enhance their 
quality of life and less congestion would engender fewer accidents, saving lives. Furthermore, time 
spent traveling to and from work is not time spent doing work. In fact, most people are essentially 
constrained to perform only the task of driving as they commute. Goods must be transported and 
service providers must travel to their clients. Clearly, traffic delays impinge on productivity and 
economic efficiency. There is also the concern of pollution as cars are generally less efficient in 
stop-and-go than in smooth flowing traffic. Longer commutes also mean longer running times and 
entail more greenhouse gases. 

By improving the policies that control traffic lights, traffic flow can be improved to mitigate 
these problems and it can be done for considerably less cost than other infrastructural 
improvements such as increasing the capacity and number of roadways or adding public transit 
systems. 

Currently, there are efforts to create reasonable control policies, but most are ad hoc and 
constitute manual tuning. The result is that drivers notice policies that are clearly suboptimal. We 
will show that, by applying machine learning techniques, we hope to derive policies that are, at least, 
locally optimal and are, in the general case, better than manual tuning. These policies would yield a 
net improvement in the efficiency of traffic systems while maintaining fairness. Since engineers are 
no longer hand-tuning policies, automated policy search could also yield a reduction in cost of 
system design. 

2. Methods
We attempted to learn traffic light control policies for the same road map (see Figure 3.1) 

using three different approaches.  The first approach is traffic balancing.  Essentially, it attempts to 
balance the green time of a direction at the light with the relative amount of traffic arriving in that 
direction at the intersection.  The second approach uses simulated annealing and a cost heuristic to 
derive the traffic light control policies in a reinforcement learning context.  The final approach is to 
recast the problem as a Markov Decision Process (MDP) and use policy iteration to find policies.  
All three methods rely on a simulator to generate the features of a function to determine the quality 
of a solution.

2.1. Simulation
Since there is no readily apparent closed-form function that predicts traffic flow on an 

arbitrary map, we resort to simulation.  By simulating traffic flow and extracting salient features, we 
derive a basis on which to compare policies.

2.1.1. Modeled Phenomena
The focus of our work is to apply and analyse the success of various machine learning 

techniques for learning traffic light control polices.  The simulation of traffic flow given a map, 
speed limits, vehicle features, driver patterns, et cetera, is incidental to our work and hence deriving a 
realistic and validated simulation is simply beyond our scope.  To mitigate this disadvantage, we 
designed our learning tools so that any simulation capable to producing the metrics we require can 
be attached and thus we are not strictly dependent on one particular simulator.

We use a simulator largely developed by Samantha Chui, TJ Hsiang, and Jennifer Shen at 
Stanford.  This simulation is correct to a first order approximation.  It models roads and 
intersections, controlled by traffic lights.  Roads are single lanes with speed limits.  Cars accelerate 
to speed limits, never exceeding them, and decelerate to avoid collisions and to comply with traffic 
lights.  Drivers choose the shortest distance between their starting location and their destination.  
Accidents, merging, multilane roads, turn lights, varying speed limits, and driver aggressiveness are 
not modeled.

2.1.2. Metrics
We have two intuitive criteria for determining the quality of a policy.  The first is that a 



policy for individual traffic lights should, in aggregate, maximise the number of cars that are able to 
travel from their point of departure to their destination within the course of the simulation.  This is 
the efficiency criterion.  The second is that the policy should be fair.  Clearly, optimising for flow 
alone could cause starvation or near-starvation as minor streets intersect major thoroughfares.  
White it is entirely appropriate that major roadways should take precedence, extreme wait times 
should be penalised.  This is the fairness criterion.

These two criteria motivate five simulation metric to measure the quality of an ensemble of 
individual light policies, given a road map:

• time required to travel key routes
• average speed of all cars
• throughput at each intersection
• disparity in wait-time distributions for different directions are each intersection, and
• average time vehicles spent accelerating and decelerating while under the control of a light.

The first two metrics are global in the sense that their values are for a simulation run and not for 
individual lights.  They primarily address the efficiency criterion.  The last three are local, meaning 
that the policy for each light is evaluated individually against them.  The first local metric again 
addresses primarily the efficiency criterion while the second local metric addresses the fairness 
criterion.  The final metric specifically targets stop-and-go oscillation which increases pollution and 
hinders the efficient, smooth flow of traffic.  It also discourages policies which change the light very 
frequently, which may be unsafe.

2.2. Throughput Balancing
Throughput balancing is an algorithm for locally maximising the expectation that a vehicle 

arriving at a light will not have to stop.  It assumes fixed-length periods for traffic lights and adjusts 
the fractional amount of time for each direction to be the fractional amount of traffic arriving for 
each direction.  In other words, if 65% of the traffic flows north-south through and intersection, 
then the light should be green for north-south 65% of the time.  This algorithm greedily attempts to 
increase traffic flow at each individual light in the hopes that this will maximise the flow for all 
lights.  If we ignore the effects of acceleration and yellow lights and let 
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This implies that, if we ignore situations where neither direction at a light is green, then the 
expectation that any car arriving in either direction will be able to continue through the light is at 
least 50%.  Since , in the real world, the period it takes for a light to completely cycle is large 
compared to time spent switching directions (i.e. in the yellow-red and red-red phases), the above 
bound reasonably approximates real world conditions.

2.3. Simulated Annealing
Simulated annealing is a non-deterministic search technique.  Parameters are altered and the 

new solution is evaluated.  If the alteration is an improvement, it is accepted with a probability given 
by the sigmoid function
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x  is the quality of the solution according to some fitness function and 
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t  is the 
“temperature” of the annealing process.  Temperature decreases linearly during rounds.  As the 



process cools, changes leading to improved fitness values are more and more likely to be accepted.  
For our fitness function, we used each metric individually.  A probability that the change in that 
metric should be accepted is derived.  A random number is then generated from a uniform 
distribution and a vote is cast by that metric for acceptance of the change.  A simple majority vote 
decides whether or not the change will be accepted.

Under our model the parameters for each light are the length of time it spends green for 
each direction.  Policies were randomly initialised and the annealing process continued for 
approximately 1100 rounds.  Annealing was then repeated several times in an effort to mitigate the 
effects of random seeds and local optima.

2.4. Markov Decision Process
The Markov Decision Process, or MDP, formalism is attractive for traffic light control for 

two reasons.  First, the Markov assumption, that the next state of traffic only depends on the current 
state, is reasonable: vehicles having already left the intersection generally have little effect on local 
conditions.  Second, there are algorithms for determining locally optimal policies once the problem 
is recast in the formalism.

First intuition may lead one to model the entire traffic system globally with a state of the 
system being the state of each traffic light (two variables, one for each direction, each taking on 
three values, green, yellow, and red).  However, since the number of states is exponential in the 
number of variables, this quickly becomes intractable.  For example, a simple grid pattern with four 
roads in each direction has 16 traffic lights.  This yields 
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316⋅2 ≈1015 states.  More concretely, many 
large east coast American cities have blocks between 
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8  of a mile long.  A 10-by-10 grid, 

representing about one square mile, would have 
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3100⋅2 ≈1095 states, orders of magnitude more than 
the number of atoms in the universe.  More complex traffic systems, such as those with turn lights, 
explode to intractability even faster.

Therefore, we reduce the problem from a global scope to a local scope.  We treat each traffic 
light as its own MDP.  Its state is defined as its configuration (assignment of green, yellow, red to 
its two directions) and the configurations of the four adjacent lights.  We also introduce a temporal 
variable to the state to represent the time spent in the current configuration of the five lights.  This 
model is linear in the number in traffic lights and so the problem becomes tractable.  The actions 
available in any state are to transition the light to green in a certain direction if it is not already.  
Since the adjacent lights may change their configurations external to the decision of the central 
light’s policy, state transitions become probabilistic under this model.

There is an intuition to back this local model.  A traffic light is concerned with traffic that 
comes from four other sources.  There is generally a correlation between that light’s configuration 
and the amount of traffic it sends, i.e. that more traffic arrives when it is green in the direction 
pointing toward the central light.  This traffic takes a certain amount of time to propagate and hence 
a model that observes the four adjacent lights and tracks the time for which they have been in their 
current configuration is reasonable.

Once we have the model in place, we then use the policy iteration algorithm determine a 
locally optimal policy for each light.  The policy for the system is the combined policy for all the 
lights.

3. Results and Conclusions
Applied the three different models of the problem to a traffic simulator to discover if we 

could improve policies over time where improvement is measured by the metrics outlined in section 
2.1.2.  Each model has its flaws as does the simulator.

Our algorithms competed on the same map (Figure 3.1).  This map was chosen because it 
based a common grid pattern with varying distances between intersections.  Traffic loads were 
increased for certain streets.  If our algorithms were performed well, we expected to see policies for 
lights where heavily traveled streets intersected lightly traveled ones to favor the heavily traveled 
ones.  We also expected to see improvements in our metrics since the system should ameliorate as 



each light learns 
and improves the 
way it processes 
its traffic. 

Throughput 
balancing did not 
produce useful 
policies.  There are 
two primary 
reasons for this.  
First, the 
assumption of 
fixed-time periods 
for light cycles is 
likely far too 
strong.  Also, the 
hypothesis class 
for light policies 
does not permit 
offsets between 
lights, i.e. all lights 
start their cycle’s 
at the same time.  
Consequently, 
these policies assume a fixed order, that is the algorithm will never find a policy where a light starts 
inverts its cycle to be north-south then east-west if it started in east-west followed by north-south.  
Given the algorithm’s inability to achieve improvement and the significant limitations of the class of 
policies, we believe that the modeling assumptions induce sizable modeling error.

Tests resulting from simulated annealing also showed no improvement over time though 
they did reveal significant obstacles produced by the simulator.  We found that, if we allowed the 
random number generator seed to vary between runs, we saw significantly different results.  For 
example, without changing the policies of any lights, one run moved about 220 combined vehicles 
through the 16 intersections 
of the map in ten minutes of 
simulated time while another 
moved 60.  This instability is 
shown in Figure 3.2.  The 
baseline throughput for each 
round of simulated annealing 
is shown as are the vote cast 
based the throughput metric 
and the final decision to 
accept the change in the 
parameters of a light or not.  
If a change was accepted at 
an iteration, a point appears in 
the upper row and if it was 
rejected, in the lower row.  
Therefore, we would expect 
to see the throughput metric 
stay approximately the same 
in the next round if the final 
decision was the reject the 

Figure 3.1

Figure 3.2



change.  This is not what we observed.
The Markov Decision Process also did not perform as well as hoped.  It is possible that 

modeling the decision of an adjacent light to change as a random variable allows too much 
information to be lost.  Further, we found the establishing the reward for a state to be difficult given 
the instability of simulation conditions over varied random seeds.

In the end, we have doubts that the search space for policies is amenable to machine learning 
models performing optimisation.  While local optima are a nontrivial problem, this issue is dwarfed 
by the problem of instability in the simulator.  Since we do not have a simulator that was subjected 
to a rigourous verification and validation, it is not possible for use to say whether the high variance 
over random seeds was an effect of the simulator itself or rather that the nature of traffic is such that 
the fine details are of primary importance.  Thorpe (Thorpe 97) notes that small changes in traffic 
light policies can lead to large changes in traffic congestion.  While he sights this as a reason to 
seek improvement through automated learning, we are leery that small changes in policy can lead to 
large, often unpredictable changes in traffic congestion, making this search space very difficult for 
machine learning techniques.
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