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Introduction and Motivation 

 

Protein-protein and protein-DNA interactions in the genome are modeled as interaction 

networks, and there are more than a dozen methods to detect these interactions. As a 

result at present there are a number of different interaction networks available for each 

sequenced organism. However even though most of these interaction predictors have 

been individually shown to predict experiment, the networks generated by different 

methods are often not superposable in any obvious way. This seeming paradox has 

simulated a burst of recent research in network integration. Integrating these different 

networks to arrive at a statistical summary of which proteins work together within a 

single organism can help detect linkages that would have been missed if only single 

predictor was used. It can also help strengthen the confidence of known linkages 

 

By formulating the network integration problem as a binary classifier we can quantify the 

extent to which integration improves prediction accuracy over a single source.  If two 

proteins have a shared functional category we say the link between them is labeled as 

L=1 and if they are in different functional categories the link is labeled L=0.  The 

network integration problem is a binary classifier in high dimensional feature space as 

shown in Figure1(a) 

 
             1(a)binary classifier paradigm                                       1(b)ROC area for classifier 

 

Figure 1(b) shows the area ROC curve for one data-set and shows that classifier 

performance increases monotonically as more data-sets are combined. Prof Serafim’s 

group has developed an integration algorithm recently. The next step now is to extract 

information from these networks that have been integrated, potentially using this 

information to then create better integration and network comparison methods. There has 

been some success using regression methods on pairs of proteins, although other machine 

learning methods haven’t been tested yet. The goal of this paper is to test clustering 

methods on these networks, and to extract information and summary statistics from them. 

 

The data consist of protein interactions networks, which are represented as 

undirected graphs in which nodes represent proteins, edges represent interaction 



probabilities. The nature of the edge weights biases clustering towards generating 

“correct” clusters. In our case, these desired clusters are those which group together 

proteins with similar function. This can allow us to find the function of unknown proteins 

based on what cluster they are in, and what other proteins are in that cluster. A potentially 

more important goal however is to find certain proteins which have important or 

otherwise interesting functions, from a biological point of view. These may include 

proteins that form the centers of a hub or which connect multiple together clusters. Such 

proteins can be thought of as vital to an organism’s survival, and from a clustering point 

of view their removal is expected to greatly affect clustering results. We tested the 

reasonability of our clustering results using annotation information for each protein. The 

information used is a simple one line description which exists for roughly half the 

proteins. One of our main goals, besides finding clusters for our data, was to create a 

code base in R which can be used for future clustering of networks. We needed to take 

care so that our implementation is flexible as network characteristics differ from genome 

to genome. For example, some networks have more proteins with high probability 

linkages than others. 

 

Algorithms Implemented 

 

We implemented a number of clustering algorithms; hierarchical clustering, 

kmeans clustering and Markov clustering, and some extensions for these algorithms. For 

the actual clustering algorithms we mainly used pre-existing code from the R library 

“cluster” and the program MCL for Markov Clustering. The algorithms in the “cluster” 

library have the advantage of natively working on dissimilarity matrixes which is the 

form our data is in. The main goal as a result was to create a unified clustering 

mechanism in R so that all clustering could be performed at once.  

 

The first algorithm we implemented was the traditional hierarchical clustering 

method, or rather a close cousin of it. We used the “agnes” and “diana” algorithms in the 

cluster library for R, which perform “divisive” and “agglomerative” clustering 

respectively. As the name implies the divisive algorithm, “diana”, begins with one large 

cluster and recursively breaks it into smaller clusters based on the elements which are the 

furthest apart. Agglomerative on the other hand, use by “agnes”, starts with many small 

clusters and then recursively combines them together into a tree. The second fundamental 

algorithms we applied are k-means and soft (fuzzy) k-means, or rather derivatives of 

them. As with hierarchical clustering we use method from the “cluster” library. “Pam” 

performs something very similar to k-means except that it uses medoids for cluster 

centers (which must be elements in the data set) and sums over dissimilarities instead 

Euclidian distances. “Clara” is an extension of “pam” designed to work with large data 

sets, which is the case for much of the data we use, by dividing the data into subsets of a 

fixed size. In soft k-means we do assign each data point to a cluster but instead we find 

the probability of each data point being in each cluster. “Fanny,” like “pam,” provides a 

soft k-means derivative for dissimilarity matrixes. We have also implemented the gap 

method for selecting the number of k-means clusters.  

 



The last clustering algorithm we implemented was Markov Clustering (MCL) 

which works by simulating “flow” on a graph. This algorithm is based on the property 

that in a graph a random walk inside a dense cluster will visit many of the nodes before 

leaving the cluster. The basic idea is to simulate “flow” in a graph, promoting flow where 

the connections are strong and demoting it where they are weak, so that flow between 

clusters dies out but not within clusters. There are two phases in the algorithm: inflation 

and expansion. Expansion can be considered the flow going outwards into other areas, 

while inflation can be considered the strengthening/weakening of the flow within the 

structure. Mathematically the expansion is characterized by converting into a Markov 

graph and computing the powers of the associated stochastic Markov matrix. Inflation is 

performed by an entry-wise Hadamard-Schur product combined with diagonal scaling. 

We opted to use the MCL package for Markov Clustering instead of coding in R, as the 

package was optimized for large data sets (as some of ours are) which are known to cause 

problems (RAM usage) for un-optimized implementations. To characterize individual 

nodes in the network we implemented graph information algorithms like degree 

distribution, clustering coefficient and between-ness centrality. All these methods give an 

indication of which nodes can be potential hubs in the network. (See Glossary for 

definitions). 

 

Experiments  
We performed clustering on a number of data-sets. To extract only highly 

probable clusters we first threshold the network by removing edges with very low 

probability of interaction. Since dissimilarity matrixes need values for each entry we set 

the probabilities of interaction for these removed edges to 0 instead. The algorithms in 

general grouped biologically related proteins with good consistency, although there was a 

good amount of noise in the clustering. The threshold parameter is dependent on the data-

set and was empirically determined. For the Helicobacter pylori data-set, the threshold 

was found to be 0.15 which gave good distribution of clusters i.e. not too many small 

clusters or a single large cluster.  

 

Observations 

1. There are many weak linkages and very few strong ones, and the strong ones are 

disjoint. As a result if they are removed through the threshold, algorithms will create 

many clusters of single nodes. 

2. There are a non-trivial number of nodes that are weakly connected to a large set of the 

remaining nodes, more than 70% in some cases. As a result a low threshold resulted in 

single large cluster, however as mentioned in point 1 a high threshold leads to many 

small clusters. These nodes have high between-ness centrality and low clustering 

coefficient, meaning that they are “hubs” between different sections of the graph but are 

not in any clique themselves.  The effect of these nodes on clustering is seen in the plots 

below we obtained for a data-set. Plot (a) gives the banner plot which displays the 

hierarchy of clusters like a tree and it plots the distances at which members are merged. 

The concentration of bars at the right side indicates a lot of nodes are merged initially at 

the top of the hierarchy. Plot (b) gives the principal components as the ellipses.  We can 

see concentration of points in one component. 



 
The existence of such proteins causes problems as they have a very large influence on 

clustering (see below). However are not very biologically significant for each cluster.  

 

3. The stability of clusters for a node can be stated as its resistance to fragmentation when 

the node is deleted. A node that renders a cluster less stable is critical and gives the 

protein that is critical for the functioning of the biological network. These are the proteins 

that are essential for the survival of the organism. The detection of these proteins is 

critically dependent on the clustering method used as well as the threshold parameters.  

 

To characterize critical nodes of the clusters, we knocked out certain nodes and 

performed clustering on the resulting network.  

The scatter-plots for experiments on Helicobacter pylori are given below. 

 

 
As seen from the plots above, nodes with high clustering coefficient do not affect the 

stability of the cluster in most cases. However nodes with high between-ness centrality, 

are found to be critical. It is also seen that MCL characterizes the critical nodes better 



than Agnes or Pam, in some runs high clustering coefficient nodes also fragmented 

clusters.  

4. MCL provides good clustering, and unlike the other methods can naturally work with 

removed edges. As a result it will place isolated proteins in their own clusters. The results 

are not always consistent, as the algorithm is not deterministic however in general it is 

quite sensitive to the removal of seemingly important proteins. 

 

Conclusions 

 

We were able to find many useful properties of such networks and the clustering 

of them. There are two sets of highly important nodes, those which are weakly connected 

to everything and those that are in well connected clusters. The former has a 

disproportionate influence on the clustering, meaning that many of the clusters may not 

be significant. At the same time, the removal of such nodes can lead to finding clusters 

which are separate and biologically significant. Markov clustering was found to create 

biologically significant clusters which and able to detect the removal of significant nodes. 

We were able to create a significant R codebase which can be used to run further analysis 

on these methods.  

 

Glossary  

1. Between-ness centrality: The between-ness centrality of a node v in a graph is the 

sum of the fraction of shortest paths between all pairs of nodes that pass through v. 

2. Clustering Coefficient:  Clustering coefficient of a node v having n neighbors is 

the ratio N/(n*(n-1)) where N is the number of edges between the n neighbors. 

3. Pam (Partitioning around mediods): This finds k representative medoids from the 

data-set. 

4. Clara (Clustering Large Applications): This clustering method is used on large 

data-sets. The data is divided into sub-datasets of equal size and Pam is applied to 

each subset. 

5. Agnes (Agglomerative Nesting): This is a agglomerative hierarchical clustering 

algorithm. 

6.  Diana (Divisive Analysis Clustering): This is a divisive hierarchical clustering 

algorithm. 
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