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1 Boosting

We have seen so far how to solve classification (and other) problems when we
have a data representation already chosen. We now talk about a procedure,
known as boosting, which was originally discovered by Rob Schapire, and
further developed by Schapire and Yoav Freund, that automatically chooses
feature representations. We take an optimization-based perspective, which
is somewhat different from the original interpretation and justification of
Freund and Schapire, but which lends itself to our approach of (1) choose a
representation, (2) choose a loss, and (3) minimize the loss.

Before formulating the problem, we give a little intuition for what we
are going to do. Roughly, the idea of boosting is to take a weak learning

algorithm—any learning algorithm that gives a classifier that is slightly bet-
ter than random—and transforms it into a strong classifier, which does much
much better than random. To build a bit of intuition for what this means,
consider a hypothetical digit recognition experiment, where we wish to dis-
tinguish 0s from 1s, and we receive images we must classify. Then a natural
weak learner might be to take the middle pixel of the image, and if it is
colored, call the image a 1, and if it is blank, call the image a 0. This clas-
sifier may be far from perfect, but it is likely better than random. Boosting
procedures proceed by taking a collection of such weak classifiers, and then
reweighting their contributions to form a classifier with much better accuracy
than any individual classifier.

With that in mind, let us formulate the problem. Our interpretation of
boosting is as a coordinate descent method in an infinite dimensional space,
which—while it sounds complex—is not so bad as it seems. First, we assume
we have raw input examples x ∈ R

n with labels y ∈ {−1, 1}, as is usual in
binary classification. We also assume we have an infinite collection of feature
functions φj : Rn → {−1, 1} and an infinite vector θ = [θ1 θ2 · · · ]T , but
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which we assume always has only a finite number of non-zero entries. For
our classifier we use

hθ(x) = sign

( ∞∑

j=1

θjφj(x)

)
.

We will abuse notation, and define θTφ(x) =
∑∞

j=1 θjφj(x).
In boosting, one usually calls the features φj weak hypotheses. Given a

training set (x(1), y(1)), . . . , (x(m), y(m)), we call a vector p = (p(1), . . . , p(m)) a
distribution on the examples if p(i) ≥ 0 for all i and

m∑

i=1

p(i) = 1.

Then we say that there is a weak learner with margin γ > 0 if for any
distribution p on the m training examples there exists one weak hypothesis
φj such that

m∑

i=1

p(i)1
{
y(i) 6= φj(x

(i))
}
≤

1

2
− γ. (1)

That is, we assume that there is some classifier that does slightly better than
random guessing on the dataset. The existence of a weak learning algorithm
is an assumption, but the surprising thing is that we can transform any weak
learning algorithm into one with perfect accuracy.

In more generality, we assume we have access to a weak learner, which is
an algorithm that takes as input a distribution (weights) p on the training
examples and returns a classifier doing slightly better than random. We will

(i) Input: A distribution p(1), . . . , p(m) and training set {(x(i), y(i))}mi=1

with
∑m

i=1 p
(i) = 1 and p(i) ≥ 0

(ii) Return: A weak classifier φj : R
n → {−1, 1} such that

m∑

i=1

p(i)1
{
y(i) 6= φj(x

(i))
}
≤

1

2
− γ.

Figure 1: Weak learning algorithm
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show how, given access to a weak learning algorithm, boosting can return a
classifier with perfect accuracy on the training data. (Admittedly, we would
like the classifer to generalize well to unseen data, but for now, we ignore
this issue.)

1.1 The boosting algorithm

Roughly, boosting begins by assigning each training example equal weight
in the dataset. It then receives a weak-hypothesis that does well according
to the current weights on training examples, which it incorporates into its
current classification model. It then reweights the training examples so that
examples on which it makes mistakes receive higher weight—so that the weak
learning algorithm focuses on a classifier doing well on those examples—while
examples with no mistakes receive lower weight. This repeated reweighting
of the training data coupled with a weak learner doing well on examples for
which the classifier currently does poorly yields classifiers with good perfor-
mance.

The boosting algorithm specifically performs coordinate descent on the
exponential loss for classification problems, where the objective is

J(θ) =
1

m

m∑

i=1

exp(−y(i)θTφ(x(i))).

We first show how to compute the exact form of the coordinate descent
update for the risk J(θ). Coordinate descent iterates as follows:

(i) Choose a coordinate j ∈ N

(ii) Update θj to
θj = argmin

θj

J(θ)

while leaving θk identical for all k 6= j.

We iterate the above procedure until convergence.
In the case of boosting, the coordinate updates are not too challenging to

derive because of the analytic convenience of the exp function. We now show
how to derive the update. Suppose we wish to update coordinate k. Define

w(i) = exp

(
−y(i)

∑

j 6=k

θjφj(x
(i))

)
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to be a weight, and note that optimizing coordinate k corresponds to mini-
mizing

m∑

i=1

w(i) exp(−y(i)φk(x
(i))α)

in α = θk. Now, define

W+ :=
∑

i:y(i)φk(x(i))=1

w(i) and W− :=
∑

i:y(i)φk(x(i))=−1

w(i)

to be the sums of the weights of examples that φk classifies correctly and
incorrectly, respectively. Then finding θk is the same as choosing

α = argmin
α

{
W+e−α +W−eα

}
=

1

2
log

W+

W−
.

To see the final equality, take derivatives and set the resulting equation to
zero, so we have −W+e−α + W−eα = 0. That is, W−e2α = W+, or α =
1
2
log W+

W−
.

What remains is to choose the particular coordinate to perform coordinate
descent on. We assume we have access to a weak-learning algorithm as in
Figure 1, which at iteration t takes as input a distribution p on the training
set and returns a weak hypothesis φt satisfying the margin condition (1).
We present the full boosting algorithm in Figure 2. It proceeds in iterations
t = 1, 2, 3, . . .. We represent the set of hypotheses returned by the weak
learning algorithm at time t by {φ1, . . . , φt}.

2 The convergence of Boosting

We now argue that the boosting procedure achieves 0 training error, and we
also provide a rate of convergence to zero. To do so, we present a lemma
that guarantees progress is made.

Lemma 2.1. Let

J(θ(t)) =
1

m

m∑

i=1

exp

(
− y(i)

t∑

τ=1

θτφτ (x
(i))

)
.

Then

J(θ(t)) ≤
√
1− 4γ2J(θ(t−1)).
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For each iteration t = 1, 2, . . .:

(i) Define weights

w(i) = exp

(
− y(i)

t−1∑

τ=1

θτφτ (x
(i))

)

and distribution p(i) = w(i)/
∑m

j=1 w
(j)

(ii) Construct a weak hypothesis φt : R
n → {−1, 1} from the distribu-

tion p = (p(1), . . . , p(m)) on the training set

(iii) Compute W+
t =

∑
i:y(i)φt(x(i))=1w

(i) and W−
t =

∑
i:y(i)φt(x(i))=−1 w

(i)

and set

θt =
1

2
log

W+
t

W−
t

.

Figure 2: Boosting algorithm

As the proof of the lemma is somewhat involved and not the central focus of
these notes—though it is important to know one’s algorithm will converge!—
we defer the proof to Appendix A.1. Let us describe how it guarantees
convergence of the boosting procedure to a classifier with zero training error.

We initialize the procedure at θ(0) = ~0, so that the initial empirical risk
J(θ(0)) = 1. Now, we note that for any θ, the misclassification error satisfies

1
{
sign(θTφ(x)) 6= y

}
= 1

{
yθTφ(x) ≤ 0

}
≤ exp

(
−yθTφ(x)

)

because ez ≥ 1 for all z ≥ 0. Thus, we have that the misclassification error
rate has upper bound

1

m

m∑

i=1

1
{
sign(θTφ(x(i))) 6= y(i)

}
≤ J(θ),

and so if J(θ) < 1
m
then the vector θ makes no mistakes on the training data.

After t iterations of boosting, we find that the empirical risk satisfies

J(θ(t)) ≤ (1− 4γ2)
t
2J(θ(0)) = (1− 4γ2)

t
2 .
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To find how many iterations are required to guarantee J(θ(t)) < 1
m
, we take

logarithms to find that J(θ(t)) < 1/m if

t

2
log(1− 4γ2) < log

1

m
, or t >

2 logm

− log(1− 4γ2)
.

Using a first order Taylor expansion, that is, that log(1 − 4γ2) ≤ −4γ2, we
see that if the number of rounds of boosting—the number of weak classifiers
we use—satisfies

t >
logm

2γ2
≥

2 logm

− log(1− 4γ2)
,

then J(θ(t)) < 1
m
.

3 Implementing weak-learners

One of the major advantages of boosting algorithms is that they automat-
ically generate features from raw data for us. Moreover, because the weak
hypotheses always return values in {−1, 1}, there is no need to normalize fea-
tures to have similar scales when using learning algorithms, which in practice
can make a large difference. Additionally, and while this is not theoret-
ically well-understood, many types of weak-learning procedures introduce
non-linearities intelligently into our classifiers, which can yield much more
expressive models than the simpler linear models of the form θTx that we
have seen so far.

3.1 Decision stumps

There are a number of strategies for weak learners, and here we focus on
one, known as decision stumps. For concreteness in this description, let
us suppose that the input variables x ∈ R

n are real-valued. A decision
stump is a function f , which is parameterized by a threshold s and index
j ∈ {1, 2, . . . , n}, and returns

φj,s(x) = sign(xj − s) =

{
1 if xj ≥ s

−1 otherwise.
(2)

These classifiers are simple enough that we can fit them efficiently even to a
weighted dataset, as we now describe.
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Indeed, a decision stump weak learner proceeds as follows. We begin with
a distribution—set of weights p(1), . . . , p(m) summing to 1—on the training
set, and we wish to choose a decision stump of the form (2) to minimize the
error on the training set. That is, we wish to find a threshold s ∈ R and
index j such that

Êrr(φj,s, p) =
m∑

i=1

p(i)1
{
φj,s(x

(i)) 6= y(i)
}
=

m∑

i=1

p(i)1
{
y(i)(x

(i)
j − s) ≤ 0

}
(3)

is minimized. Naively, this could be an inefficient calculation, but a more
intelligent procedure allows us to solve this problem in roughly O(nm logm)
time. For each feature j = 1, 2, . . . , n, we sort the raw input features so that

x
(i1)
j ≥ x

(i2)
j ≥ · · · ≥ x

(im)
j .

As the only values s for which the error of the decision stump can change
are the values x

(i)
j , a bit of clever book-keeping allows us to compute

m∑

i=1

p(i)1
{
y(i)(x

(i)
j − s) ≤ 0

}
=

m∑

k=1

p(ik)1
{
y(ik)(x

(ik)
j − s) ≤ 0

}

efficiently by incrementally modifying the sum in sorted order, which takes
time O(m) after we have already sorted the values x

(i)
j . (We do not describe

the algorithm in detail here, leaving that to the interested reader.) Thus,
performing this calcuation for each of the n input features takes total time
O(nm logm), and we may choose the index j and threshold s that give the
best decision stump for the error (3).

One very important issue to note is that by flipping the sign of the thresh-
olded decision stump φj,s, we achieve error 1− Êrr(φj,s, p), that is, the error
of

Êrr(−φj,s, p) = 1− Êrr(φj,s, p).

(You should convince yourself that this is true.) Thus, it is important to also

track the smallest value of 1 − Êrr(φj,s, p) over all thresholds, because this

may be smaller than Êrr(φj,s, p), which gives a better weak learner. Using
this procedure for our weak learner (Fig. 1) gives the basic, but extremely
useful, boosting classifier.
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Figure 3: Best logistic regression classifier using the raw features x ∈ R
2

(and a bias term x0 = 1) for the example considered here.

3.2 Example

We now give an example showing the behavior of boosting on a simple
dataset. In particular, we consider a problem with data points x ∈ R

2,
where the optimal classifier is

y =

{
1 if x1 < .6 and x2 < .6

−1 otherwise.
(4)

This is a simple non-linear decision rule, but it is impossible for standard
linear classifiers, such as logistic regression, to learn. In Figure 3, we show
the best decision line that logistic regression learns, where positive examples
are circles and negative examples are x’s. It is clear that logistic regression
is not fitting the data particularly well.

With boosted decision stumps, however, we can achieve a much better
fit for the simple nonlinear classification problem (4). Figure 4 shows the
boosted classifiers we have learned after different numbers of iterations of
boosting, using a training set of size m = 150. From the figure, we see that
the first decision stump is to threshold the feature x1 at the value s ≈ .23,
that is, φ(x) = sign(x1 − s) for s ≈ .23.
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Figure 4: Boosted decision stumps after t = 2, 4, 5, and 10 iterations of
boosting, respectively.
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3.3 Other strategies

There are a huge number of variations on the basic boosted decision stumps
idea. First, we do not require that the input features xj be real-valued. Some
of them may be categorical, meaning that xj ∈ {1, 2, . . . , k} for some k, in
which case natural decision stumps are of the form

φj(x) =

{
1 if xj = l

−1 otherwise,

as well as variants setting φj(x) = 1 if xj ∈ C for some set C ⊂ {1, . . . , k} of
categories.

Another natural variation is the boosted decision tree, in which instead of a
single level decision for the weak learners, we consider conjuctions of features
or trees of decisions. Google can help you find examples and information on
these types of problems.

A Appendices

A.1 Proof of Lemma 2.1

We now return to prove the progress lemma. We prove this result by directly
showing the relationship of the weights at time t to those at time t − 1. In
particular, we note by inspection that

J(θ(t)) = min
α

{W+
t e−α +W−

t eα} = 2
√

W+
t W−

t

while

J(θ(t−1)) =
1

m

m∑

i=1

exp

(
− y(i)

t−1∑

τ=1

θτφτ (x
(i))

)
= W+

t +W−
t .

We know by the weak-learning assumption that

m∑

i=1

p(i)1
{
y(i) 6= φt(x

(i))
}
≤

1

2
−γ, or

1

W+
t +W−

t

∑

i:y(i)φt(x(i))=−1

w(i)

︸ ︷︷ ︸
=W−

t

≤
1

2
−γ.
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Rewriting this expression by noting that the sum on the right is nothing but
W−

t , we have

W−
t ≤

(
1

2
− γ

)
(W+

t +W−
t ), or W+

t ≥
1 + 2γ

1− 2γ
W−

t .

By substituting α = 1
2
log 1+2γ

1−2γ
in the minimum defining J(θ(t)), we obtain

J(θ(t)) ≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t

√
1 + 2γ

1− 2γ

= W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ + 2γ)

√
1 + 2γ

1− 2γ

≤ W+
t

√
1− 2γ

1 + 2γ
+W−

t (1− 2γ)

√
1 + 2γ

1− 2γ
+ 2γ

1− 2γ

1 + 2γ

√
1 + 2γ

1− 2γ
W+

t

= W+
t

[√
1− 2γ

1 + 2γ
+ 2γ

√
1− 2γ

1 + 2γ

]
+W−

t

√
1− 4γ2,

where we used that W−
t ≤ 1−2γ

1+2γ
W+

t . Performing a few algebraic manipula-
tions, we see that the final expression is equal to

√
1− 4γ2(W+

t +W−
t ).

That is, J(θ(t)) ≤
√
1− 4γ2J(θ(t−1)).
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