Introduction to Weak Supervision

Chris Ré

CS229
Messages for Today

Introduce **two key concepts:**

- **Method of moments for** latent probabilistic variable models
 - *They have provable global solution* (Compare with EM methods)
 - Widely used in “tensor methods”
- **Probability distributions on graphs** (graphical models)
 - Fun facts about Gaussians that are good for your soul (Inverse covariance matrix structure and graphs)

- High-level overview of new area called **weak supervision.**
 - Why supervision is so critical in this age and resources (nascent)
 - Very recent work & biased by our own group’s work—but you have likely used it today!
Various techniques for limited labeled data

- **Active learning**: Select points to label more intelligently
- **Semi-supervised learning**: Use unlabeled data as well
- **Transfer learning**: Transfer from one training dataset to a new task
- **Weak supervision**: Label data in cheaper, higher-level ways

This lecture.

https://www.snorkel.org/blog/weak-supervision
Related Work in Weak Supervision

- **Crowdsourcing**: Dawid & Skene 1979, Karger et. al. 2011, Dalvi et. al. 2013, Ruvolo et. al. 2013, Zhang et. al. 2014, Berend & Kontorovich 2014, etc.
- **Co-Training**: Blum & Mitchell 1998
- **Noisy Learning**: Bootkrajang et. al. 2012, Mnih & Hinton 2012, Xiao et. al. 2015, etc.
- **Indirect Supervision**: Clarke et. al. 2010, Guu et. Al. et. al. 2017, etc.
- **Boosting & Ensembling**: Schapire & Freund, Platanios et. al. 2016, etc.
- **Constraint-Based Supervision**: Bilenko et. al. 2004, Koestinger et. al. 2012, Stewart & Ermon 2017, etc.
More Related work

• So much more! *Work was inspired by classics and new Cotraining, GANs, capsule networks, semi-supervised learning, crowd-sourcing and so much more!*

• Please see blog for summary. https://www.snorkel.org/blog/weak-supervision
... Biased by on-going work...
ML Application =

Model + Data + Hardware

State-of-the-art models and hardware are available.
Training data is not
But supervision comes from god herself....
... but training data usually comes from a dirty, messy process.

Can we provide **mathematical** and **systems structure** for this messy process?
Supervision is where the action is...

Model differences **overrated**, and supervision differences **underrated**.
We spent a year on this challenge

- Created large dataset of clinical labels
- Evaluated effect of label quality
- Work published in a *clinical journal*

<table>
<thead>
<tr>
<th>Model</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOVW + KSVM</td>
<td>0.88</td>
</tr>
<tr>
<td>AlexNet</td>
<td>0.87</td>
</tr>
<tr>
<td>ResNet-18</td>
<td>0.89</td>
</tr>
<tr>
<td>DenseNet-121</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Often: Differences in models ~ 2-3 points.

Label quality & quantity > model choice.

Data augmentation by specifying invariances

Images
- Rotations
- Scaling / Zooms
- Brightness
- Color Shifts
- Etc...

Text
- Synonymy
- Positional Swaps
- Etc...

Medical
- Domain-specific transformations. Ex:
 1. Segment tumor mass
 2. Move
 3. Resample background tissue
 4. Blend

How do we choose which to apply? In what order?
Simple Benchmarks:
Data Augmentation is Critical

Ex: 13.4 pt. avg. accuracy gain from data augmentation across top ten CIFAR-100 models—
difference in top-10 models is less!
Training Signal is key to pushing SotA

New methods for gathering signal leading the state of the art, lots of exciting ML progress here (SotA due to noisy teacher!)

Google AI: AutoAugment: Using learned data augmentation policies
• Augmentation Policies first in Ratner et al. NIPS ’17

Facebook Hash tag weakly supervised pre-training
• Pre-train using a massive dataset with hashtags
Automating the Art of Data Augmentation
Part I Overview

The Stanford AI Lab Blog

Sharon Y. Li
(to: Wisconsin)

http://ai.stanford.edu/blog/data-augmentation/
Training data: the new bottleneck

Slow, expensive, and static
Manual Labels

<table>
<thead>
<tr>
<th>Time</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow</td>
</tr>
</tbody>
</table>

Expensive

<table>
<thead>
<tr>
<th>Time</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expensive</td>
</tr>
</tbody>
</table>

Static

{Positive, Negative}

{Positive, Neutral, Negative}

Manual Labels

Programmatic Labels

<table>
<thead>
<tr>
<th>Time</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fast</td>
</tr>
</tbody>
</table>

Cheap

$0.10/hr

Dynamic

Trade-off: programmatic labels are noisy…
Snorkel: Formalizing Programmatic Labeling

Observation: Weak supervision applied in ad hoc and isolated ways.
Snorkel: Formalizing Programmatic Labeling

Goal: Replace \textit{ad hoc} weak supervision with a formal, unified, theoretically grounded approach for programmatic labeling
The Real Work

Stephen Bach Braden Hancock Henry Ehrenberg Alex Ratner Paroma Varma

Snorkel.org
Running Example: NER

Dr. Bob Jones is a specialist in cardiomyopathy treatment, leading the cardiology division at Saint Francis.

Let’s look at labeling “Person” versus “Hospital”

Goal: Label training data using weak supervision strategies for these tasks
Weak Supervision as Labeling Functions

Dr. Bob Jones is a specialist in cardiomyopathy treatment, leading the cardiology division at Saint Francis.

Problem: These noisy sources conflict and are correlated.

```python
def existing_classifier(x):
    return off_shelf_classifier(x)

def upper_case_existing_classifier(x):
    if all(map(is_upper, x.split())) and \
    off_shelf_classifier(x) == 'PERSON':
        return PERSON

def is_in_hospital_name_DB(x):
    if x in HOSPITAL_NAMES_DB:
        return HOSPITAL
```

“PERSON”

“PERSON”

“HOSPITAL”
The Snorkel Pipeline

LABELING FUNCTIONS

1. Users write labeling functions to generate noisy labels
2. Snorkel models and combines the noisy labels into probabilities
3. The resulting probabilistic labels train a model

KEY IDEA: Probabilistic training point carries accuracy. No hand labeled data needed.
People use it...

“Snorkel DryBell” collaboration with Google Ads. Bach et al. SIGMOD19.

Used in production in many industries, startups, and other tech companies!

Http://snorkel.org
Collaboration Highlight: Google + Snorkel

- **Snorkel DryBell** is a production version of Snorkel focused on:
 - Using *organizational knowledge resources* to train ML models
 - Handling *web-scale* data
 - Non-servable to servable feature transfer.

Thank you, Google!
Even best funded teams...

[Bach et. al., SIGMOD 2019]
Maybe you have used it?

Overton: A Data System for Monitoring and Improving Machine-Learned Products

Christopher Ré
Apple

Feng Niu
Apple

Pallavi Gudipati
Apple

Charles Srisuwananukorn
Apple

Migrating a Privacy-Safe Information Extraction System to a Software 2.0 Design

Ying Sheng
Google
Mountain View, CA, USA
yingsheng@google.com

Nguyen Vo
Google
Mountain View, CA, USA
nguynvo@google.com

James B. Wendt
Google
Mountain View, CA, USA
jwendt@google.com

Sandeep Tata
Google
Mountain View, CA, USA
tata@google.com

Marc Najork
Google
Mountain View, CA, USA
najork@google.com

Leveraging Organizational Resources to Adapt Models to New Data Modalities

Sahaana Suri; Raghuveer Chanda, Neslihan Bulut, Pradyumna Narayana, Yemao Zeng, Peter Bailis*, Sugato Basu, Girija Narlikar, Christopher Ré*, Abishek Sethi

Google, Stanford*
It has changed use real systems...

A couple of highlights

- Used by multiple teams with good error reduction over production.
- Take away: many systems are almost entirely weak supervision based.

<table>
<thead>
<tr>
<th>Resourcing</th>
<th>Error Reduction</th>
<th>Amount of Weak Supervision</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>65% (2.9×)</td>
<td>80%</td>
</tr>
<tr>
<td>Medium</td>
<td>82% (5.6×)</td>
<td>96%</td>
</tr>
<tr>
<td>Medium</td>
<td>72% (3.6×)</td>
<td>98%</td>
</tr>
<tr>
<td>Low</td>
<td>40% (1.7×)</td>
<td>99%</td>
</tr>
</tbody>
</table>

CIDR2020
Weak Supervision in Science & Medicine

Cross-Modal Weak Supervision

"Indication: Chest pain. Findings: No focal consolidation or pneumothorax."

Auxiliary modality x_1

Blog: http://hazyresearch.stanford.edu/ws4science

Text & Extraction

A. Callahan et al., NPJ Dig Med, 2020

Imaging & Diagnostics

J. Fries et al., Nat Comms, 2019

J. Dunnmon et al., Radiology, 2019

K. Saab et al., NPJ Dig Med, 2020

V. Kuleshov et al., Nat Comms, 2019
High-Level Related Work

Software 2.0

Andrej Karpathy
Nov 11, 2017 · 8 min read

Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale
Let’s look under the hood and take a peak at some math (to the whiteboard soon..)
Users write labeling functions for multiple related tasks.

We model the labeling functions' behavior to de-noise them.

We use the probabilistic labels to train a multi-task model.

How can we do anything without the ground truth labels?
Model as Generative Process

Later: We will define what this picture means precisely.

```
def existing_classifier(x):
    return off_shelf_classifier(x)

def upper_case_existing_classifier(x):
    if all(map(is_upper, x.split())) and \
    off_shelf_classifier(x) == 'PERSON':
        return PERSON

def is_in_hospital_name_DB(x):
    if x in HOSPITAL_NAMES_DB:
        return HOSPITAL
```

How to learn the parameters of this model (accuracies & correlations) without Y?
def existing_classifier(x):
 return off_shelf_classifier(x)

def upper_case_existing_classifier(x):
 if all(map(is_upper, x.split())) and off_shelf_classifier(x) == 'PERSON':
 return PERSON

def is_in_hospital_name_DB(x):
 if x in HOSPITAL_NAMES_DB:
 return HOSPITAL

Intuition: Learn from the Overlaps

Key idea: We observe agreements (+1) and disagreements (-1) on many points! (More later!)