Dimensionality Reduction Principal Component Analysis (PCA)

CS229: Machine Learning
Carlos Guestrin
Stanford University
Slides include content developed by and co-developed with Emily Fox

©2021 Carlos Guestrin

Embedding

Example: Embedding images to visualize data

Embedding words

[Joseph Turian]

Embedding words (zoom in)

4

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data
- Dimensionality reduction: represent data with fewer dimensions
 - easier learning fewer parameters
 - visualization hard to visualize more than 3D or 4D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

Lower dimensional projections

 Rather than picking a subset of the features, we can create new features that are combinations of existing features

- Let's see this in the unsupervised setting
 - just **x**, but no y

Linear projection and reconstruction

What if we project onto d vectors?

If I had to choose one of these vectors, which do I prefer?

Principal component analysis (PCA) – Basic idea

- Project d-dimensional data into k-dimensional space while preserving as much information as possible:
 - e.g., project space of 10000 words into 3-dimensions
 - e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

"PCA explained visually"

http://setosa.io/ev/principal-component-analysis/

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - **point**: $x = (x_1, ..., x_d)$
 - select a basis set of basis vectors $(\mathbf{u}_1,...,\mathbf{u}_k)$
 - we consider orthonormal basis:
 - **u**_i•**u**_i=1, and **u**_i•**u**_i=0 for i≠j
 - select a center \overline{x} , defines offset of space
 - best coordinates in lower dimensional space defined by dot-products:

$$(z_1,...,z_k)$$
, $z_i = (\mathbf{x} - \overline{\mathbf{x}}) \bullet \mathbf{u}_i$

minimum squared error

PCA finds projection that minimizes reconstruction error

- Given N data points: $\mathbf{x}^i = (x_1^i, ..., x_d^i)$, i=1...N
- Will represent each point as a projection:

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$
 and $\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}^i$ $z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{i}$$

$$z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

- PCA:
 - Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Understanding the reconstruction error

 Note that xⁱ can be represented exactly by ddimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^{\mathsf{u}} z_j^i \mathbf{u}_j$$

Rewriting error:

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$
$$z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

□Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^{N} \sum_{j=k+1}^{d} [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i} - \bar{\mathbf{x}})(\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

Minimizing reconstruction error and eigen vectors

Minimizing reconstruction error equivalent to picking orthonormal basis $(\mathbf{u}_1,...,\mathbf{u}_d)$ minimizing:

$$error_k = \sum_{j=k+1}^{d} \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$
• Eigen vector:

Minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_d)$ to be eigen vectors with smallest eigen values

Basic PCA algoritm

- Start from N by d data matrix X
- Recenter: subtract mean from each row of X

$$- X_c \leftarrow X - \overline{X}$$

- Compute covariance matrix:
 - $\Sigma \leftarrow 1/N X_c^T X_c$
- Find eigen vectors and values of Σ
- **Principal components:** k eigen vectors with highest eigen values

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

PCA example – reconstruction

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

only used first principal component

Eigenfaces [Turk, Pentland '91]

• Input images:

Principal components:

Eigenfaces reconstruction

• Each image corresponds to adding 8 principal components:

Scaling up

- Covariance matrix can be really big!
 - $-\Sigma$ is d by d
 - Say, only 10000 features
 - finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - finds to k eigenvectors
 - great implementations available, e.g., python, R, Matlab svd

SVD

- Write $X = W S V^T$
 - $\mathbf{X} \leftarrow$ data matrix, one row per datapoint
 - $\mathbf{W} \leftarrow$ weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - $\mathbf{S} \leftarrow$ singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - V^T ← singular vector matrix
 - in our setting each row is eigenvector \boldsymbol{v}_{j}

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $X_c \leftarrow X \overline{X}$
- Call SVD algorithm on **X**_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of V^T)
 - Coefficients become:

What you need to know

- Dimensionality reduction
 - why and when it's important
- Simple feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD