Dimensionality Reduction Principal Component Analysis (PCA)

CS229: Machine Learning
Carlos Guestrin
Stanford University
Slides include content developed by and co-developed with Emily Fox

Embedding

Example: Embedding images to visualize data

Embedding words

Embedding words (zoom in)

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
- e.g., text data
- Dimensionality reduction: represent data with fewer dimensions
- easier learning - fewer parameters
- visualization - hard to visualize more than 3D or 4D
- discover "intrinsic dimensionality" of data
- high dimensional data that is truly lower dimensional

Lower dimensional projections

- Rather than picking a subset of the features, we can create new features that are combinations of existing features
- Let's see this in the unsupervised setting
- just \mathbf{x}, but no y

Linear projection and reconstruction

What if we project onto d vectors?

If I had to choose one of these vectors, which do I prefer?

Principal component analysis (PCA) -

Basic idea

- Project d-dimensional data into k-dimensional space while preserving as much information as possible:
- e.g., project space of 10000 words into 3-dimensions
- e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

"PCA explained visually"

http://setosa.io/ev/principal-component-analysis/

Linear projections, a review

- Project a point into a (lower dimensional) space:
- point: $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$
- select a basis - set of basis vectors - ($\left.\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$
- we consider orthonormal basis:
- $\mathbf{u}_{\mathbf{i}} \bullet \mathbf{u}_{\mathrm{i}}=1$, and $\mathbf{u}_{\mathrm{i}} \bullet \mathbf{u}_{\mathrm{j}}=0$ for $\mathrm{i} \neq \mathrm{j}$
- select a center $-\overline{\mathbf{x}}$, defines offset of space
- best coordinates in lower dimensional space defined by dot-products:
$\left(z_{1}, \ldots, z_{k}\right), z_{i}=(x-\bar{x}) \bullet u_{i}$
- minimum squared error

PCA finds projection that minimizes reconstruction error

- Given N data points: $\mathbf{x}^{\mathbf{i}}=\left(x_{1}{ }^{i}, \ldots, x_{d^{i}}{ }^{i}\right), i=1 \ldots N$
- Will represent each point as a projection:

$$
\hat{\mathrm{x}}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j} \quad \text { and } \quad \overline{\mathrm{x}}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{x}^{i} \quad z_{j}^{i}=\left(\mathrm{x}^{i}-\overline{\mathrm{x}}\right) \cdot \mathbf{u}_{j}
$$

- PCA:
- Given $\mathrm{k} \ll \mathrm{d}$, find $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{k}}\right)$ minimizing reconstruction error:

$$
\operatorname{error}_{k}=\sum_{i=1}^{N}\left(\mathrm{x}^{i}-\hat{\mathrm{x}}^{i}\right)^{2}
$$

Understanding the reconstruction error

- Note that \mathbf{x}^{i} can be represented exactly by ddimensional proiection:

$$
\mathrm{x}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{\mathrm{d}} z_{j}^{i} \mathbf{u}_{j}
$$

- Rewriting error:

Reconstruction error and covariance matrix

$$
\operatorname{error}_{k}=\sum_{i=1}^{\mathrm{N}} \sum_{j=k+1}^{\mathrm{d}}\left[\mathbf{u}_{j} \cdot\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)\right]^{2} \quad \Sigma=\frac{1}{\mathrm{~N}} \sum_{i=1}^{\mathrm{N}}\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)^{T}
$$

Minimizing reconstruction error and eigen vectors

- Minimizing reconstruction error equivalent to picking orthonormal basis ($\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{d}}$) minimizing:
- Eigen vector:

$$
\text { error }_{k}=\mathrm{N} \sum_{j=k+1}^{\mathrm{d}} \mathbf{u}_{j}^{T} \sum \mathbf{u}_{j}
$$

- Minimizing reconstruction error equivalent to picking $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{d}\right)$ to be eigen vectors with smallest eigen values

Basic PCA algoritm

- Start from N by d data matrix \mathbf{X}
- Recenter: subtract mean from each row of \mathbf{X}
- $\mathrm{X}_{\mathrm{c}} \leftarrow \mathrm{X}-\overline{\mathrm{X}}$
- Compute covariance matrix:
- $\Sigma \leftarrow 1 / N X_{c}{ }^{\top} \mathbf{X}_{c}$
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

PCA example

$$
\widehat{\mathbf{x}}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j}
$$

PCA example - reconstruction

$$
\hat{\mathbf{x}}^{i}=\overline{\mathbf{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j}
$$

Eigenfaces [Turk, Pentland '91]

- Input images:

- Principal components:

Eigenfaces reconstruction

- Each image corresponds to adding 8 principal components:

Scaling up

- Covariance matrix can be really big!
- Σ is d by d
- Say, only 10000 features
- finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
- finds to k eigenvectors
- great implementations available, e.g., python, R, Matlab svd

SVD

- Write $\mathbf{X}=\mathbf{W} \mathbf{S} \mathbf{V}^{\top}$
- $\mathbf{X} \leftarrow$ data matrix, one row per datapoint
- $\mathbf{W} \leftarrow$ weight matrix, one row per datapoint - coordinate of \mathbf{x}^{i} in eigenspace
- $\mathbf{S} \leftarrow$ singular value matrix, diagonal matrix
- in our setting each entry is eigenvalue λ_{j}
- $\mathbf{V}^{\top} \leftarrow$ singular vector matrix
- in our setting each row is eigenvector \mathbf{v}_{j}

PCA using SVD algoritm

- Start from m by n data matrix \mathbf{X}
- Recenter: subtract mean from each row of \mathbf{X}
- $\mathbf{X}_{\mathrm{c}} \leftarrow \mathbf{X}-\overline{\mathbf{X}}$
- Call SVD algorithm on \mathbf{X}_{c} - ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of $\mathbf{V}^{\mathbf{\top}}$)
- Coefficients become:

What you need to know

- Dimensionality reduction
- why and when it's important
- Simple feature selection
- Principal component analysis
- minimizing reconstruction error
- relationship to covariance matrix and eigenvectors
- using SVD

