Dimensionality Reduction Principal Component Analysis (PCA)

CS229: Machine Learning
Carlos Guestrin
Stanford University
Slides include content developed by and co-developed with Emily Fox

©2021 Carlos Guestrin

Embedding

Example: Embedding images to visualize data

Embedding words

[Joseph Turian]

Embedding words (zoom in)

4

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data
- Dimensionality reduction: represent data with fewer dimensions
 - easier learning fewer parameters
 - visualization hard to visualize more than 3D or 4D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

Lower dimensional projections

277 K

Rather than picking a subset of the features, we can create new features that are combinations of existing features

- Let's see this in the unsupervised setting
 - just **x**, but no y

Linear projection and reconstruction

What if we project onto d vectors?

 $\mathcal{L}' = 2, \overline{\alpha}, + 2, \overline{\alpha}_2$

(ignoring offset)

8

©2021 Carlos Guestrin

CS229: Machine Learning

If I had to choose one of these vectors, which do I prefer?

Principal component analysis (PCA) – Basic idea

- Project d-dimensional data into k-dimensional space while preserving as much information as possible:
 - e.g., project space of 10000 words into 3-dimensions
 - e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error

"PCA explained visually"

http://setosa.io/ev/principal-component-analysis/

Linear projections, a review

- point: $x = (x_1,...,x_d)$

- we consider orthonormal basis: $u_i \bullet u_i = 1$, and $u_i \bullet u_j = 0$ for $i \neq j$

- select a center $\overline{\mathbf{x}}$, defines offset of space
- best coordinates in lower dimensional space defined by dot-products:

$$(z_1,...,z_k), z_i = (x-\overline{x}) \bullet u_i$$

minimum squared error

$$Z_1 = (x-\overline{x}) \cdot \overline{C_1}$$
 $Z_1 = \operatorname{argmin}(x-\overline{x}) - \overline{Z_1}$

金三文十巻は以

PCA finds projection that minimizes reconstruction error

- Given N data points: $\mathbf{x}^i = (x_1^i, ..., x_d^i)$, i=1...N
- Will represent each point as a projection:

resent each point as a projection:
$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \text{and} \quad \bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}^i \qquad z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \text{and} \quad \bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}^i \qquad z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

$$\mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \text{and} \quad \bar{\mathbf{x}}^i = \sum_{j=1}^N \mathbf{x}^j \quad \mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^N \mathbf{x}^j \cdot \mathbf{u}_j$$

$$\mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \text{and} \quad \bar{\mathbf{x}}^i = \sum_{j=1}^N \mathbf{x}^i \quad \mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^N \mathbf{x}^i \cdot \mathbf{u}_j$$

$$\mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \text{and} \quad \bar{\mathbf{x}}^i = \sum_{j=1}^N \mathbf{x}^i \quad \mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^N \mathbf{x}^i \cdot \mathbf{u}_j$$

$$\mathbf{x}^i = \mathbf{x}^i + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \text{and} \quad \bar{\mathbf{x}}^i = \sum_{j=1}^N z$$

PCA:

- Given k<<d, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

want to
$$error_k = \sum_{i=1}^{N} (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Understanding the reconstruction error

Note that xⁱ can be represented exactly by d-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^{\mathsf{d}} z^i_j \mathbf{u}_j$$

Rewriting error:

$$= \sum_{i=1}^{N} \left[\frac{1}{x+z} z_{i}^{j} u_{j} - \left[\frac{1}{x+z} z_{i}^{j} u_{j} \right] - \sum_{i=1}^{N} \left[\frac{1}{z+z} z_{i}^{j} u_{i} \right] \right]$$

 \square Given k<<d, find ($\mathbf{u}_1,...,\mathbf{u}_k$)

 $z_i^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_i$

minimizing reconstruction error:

 $= \sum_{i=1}^{N} \left[\sum_{j=k+1}^{d} u_{j} u_{j} \right]^{2}$

$$= \sum_{i=1}^{N} \sum_{j=K+1}^{d} (2j)^2 \leftarrow$$

minimizing reconstruction error =
min Square of thrown outwefficient.

Reconstruction error and covariance matrix

$$error_{k} = \sum_{i=1}^{N} \sum_{j=k+1}^{d} [u_{j} \cdot (x^{i} - \bar{x})]^{2}$$

$$= \sum_{i=1}^{N} \sum_{j=k+1}^{d} [u_{j} \cdot (x^{i}$$

Minimizing reconstruction error and eigen vectors

- Minimizing reconstruction error equivalent to picking orthonormal basis $(\mathbf{u}_1,...,\mathbf{u}_d)$ minimizing: if \mathbf{u}_j are also \mathbf{u}_j and \mathbf{u}_j are also \mathbf{u}_j and \mathbf{u}_j are also \mathbf{u}_j and \mathbf{u}_j are also \mathbf{u}_j are also \mathbf{u}_j and \mathbf{u}_j are als Minimizing reconstruction error equivalent to picking orthonormal

 - Minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_d)$ to be eigen vectors with smallest eigen values

ignored dimensions ignored dimensions

Min error $K \equiv \text{throwing out } \text{UK+1,---, use } \text{ with smallest}$ Up... Up.

Excepting Up.---, My with largest eigen values of EOccupancy

Occupancy

Occupan

Basic PCA algoritm

$$- X_c \leftarrow X - \overline{X}$$

• Compute covariance matrix:

-
$$\Sigma$$
 ← 1/N $X_c^T X_c$

- Find eigen vectors and values of Σ
- **Principal components:** k eigen vectors with highest eigen values

PCA example

PCA example – reconstruction

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

only used first principal component

Eigenfaces [Turk, Pentland '91]

Eigenfaces reconstruction

• Each image corresponds to adding 8 principal components:

Herget face De

Scaling up

- Covariance matrix can be really big!
 - Σ is d by d \leftarrow (00 000 contrives
 - Say, only 10000 features
 - finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - finds to k eigenvectors, without for ming E explicitly
 - great implementations available, e.g., python, R, Matlab svd

SVD

- Write $X = W S V^T$
 - $\mathbf{X} \leftarrow$ data matrix, one row per datapoint
 - $\mathbf{W} \leftarrow$ weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - $\mathbf{S} \leftarrow$ singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - V^T ← singular vector matrix
 - in our setting each row is eigenvector \boldsymbol{v}_{j}

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 - $X_c \leftarrow X \overline{X}$
- Call SVD algorithm on **X**_c ask for k singular vectors
- **Principal components:** k singular vectors with highest singular values (rows of V^T)
 - Coefficients become:

What you need to know

- Dimensionality reduction
 - why and when it's important
- Simple feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD