Overfitting in decision trees
What happens when we increase depth?

Training error reduces with depth

<table>
<thead>
<tr>
<th>Tree depth</th>
<th>depth = 1</th>
<th>depth = 2</th>
<th>depth = 3</th>
<th>depth = 5</th>
<th>depth = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training error</td>
<td>0.22</td>
<td>0.13</td>
<td>0.10</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Decision boundary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two approaches to picking simpler trees

1. **Early Stopping:**
 Stop the learning algorithm *before* tree becomes too complex

2. **Pruning:**
 Simplify the tree *after* the learning algorithm terminates
Technique 1: Early stopping

• **Stopping conditions (recap):**
 1. All examples have the same target value
 2. No more features to split on

• **Early stopping conditions:**
 1. Limit tree depth (choose `max_depth` using validation set)
 2. Do not consider splits that do not cause a sufficient decrease in classification error
 3. Do not split an intermediate node which contains too few data points
Challenge with early stopping condition 1

Hard to know exactly when to stop

Also, might want some branches of tree to go deeper while others remain shallow
Early stopping condition 2: Pros and Cons

• **Pros:**
 – A reasonable heuristic for early stopping to avoid useless splits

• **Cons:**
 – *Too short sighted:* We may miss out on “good” splits may occur right after “useless” splits
 – Saw this with “xor” example
Two approaches to picking simpler trees

1. **Early Stopping:**
 Stop the learning algorithm *before* tree becomes too complex

2. **Pruning:**
 Simplify the tree *after* the learning algorithm terminates

Complements early stopping
Pruning: *Intuition*
Train a complex tree, simplify later
Pruning motivation

- Classification Error
- True Error
- Training Error
- Tree depth

Simple tree
Complex tree

Simplify after tree is built
Don’t stop too early

©2021 Carlos Guestrin
Scoring trees: Desired total quality format

Want to balance:

i. How well tree fits data
ii. Complexity of tree

Total cost = measure of fit + measure of complexity
Simple measure of complexity of tree

\[L(T) = \# \text{ of leaf nodes} \]
Balance simplicity & predictive power

Too complex, risk of overfitting

Start

excellent

Credit?

poor

fair

Term?

Safe

Risky

3 years

5 years

Income?

high

low

Term?

Safe

Risky

3 years

5 years

Too simple, high classification error

Start

Risky

©2021 Carlos Guestrin
Balancing fit and complexity

Total cost $C(T) = \text{Error}(T) + \lambda \ L(T)$

If $\lambda = 0$:

If $\lambda = \infty$:

If λ in between:
Tree pruning algorithm
Step 1: Consider a split

Tree T

- Start
 - Credit?
 - fair
 - Term?
 - 3 years
 - Risky
 - 5 years
 - Safe
 - poor
 - Income?
 - high
 - Term?
 - 3 years
 - Risky
 - 5 years
 - Safe
 - low
 - Term?
 - 5 years
 - Risky

Candidate for pruning
Step 2: Compute total cost $C(T)$ of split

Tree T

Start

excellent

Credit?

fair

poor

Term?

3 years

5 years

Risky

Safe

Income?

high

low

Term?

3 years

5 years

Risky

Safe

Risky

Candidate for pruning

Tree

Error

#Leaves

Total

<table>
<thead>
<tr>
<th>Tree</th>
<th>Error</th>
<th>#Leaves</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.25</td>
<td>6</td>
<td>0.43</td>
</tr>
</tbody>
</table>

$C(T) = \text{Error}(T) + \lambda \text{L}(T)$

$\lambda = 0.3$
Step 2: “Undo” the splits on $T_{smaller}$

$$C(T) = \text{Error}(T) + \lambda \text{L}(T)$$

<table>
<thead>
<tr>
<th>Tree</th>
<th>Error</th>
<th>#Leaves</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.25</td>
<td>6</td>
<td>0.43</td>
</tr>
<tr>
<td>$T_{smaller}$</td>
<td>0.26</td>
<td>5</td>
<td>0.41</td>
</tr>
</tbody>
</table>

$\lambda = 0.3$
Prune if total cost is lower: $C(T_{\text{smaller}}) \leq C(T)$

Tree T_{smaller}

Worse training error but lower overall cost

$\lambda = 0.3$

<table>
<thead>
<tr>
<th>Tree</th>
<th>Error</th>
<th>#Leaves</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.25</td>
<td>6</td>
<td>0.43</td>
</tr>
<tr>
<td>T_{smaller}</td>
<td>0.26</td>
<td>5</td>
<td>0.41</td>
</tr>
</tbody>
</table>

$C(T) = \text{Error}(T) + \lambda \cdot L(T)$

Replace split by leaf node? YES!
Step 5: Repeat Steps 1-4 for every split

Decide if each split can be “pruned”
Summary of overfitting in decision trees
What you can do now…

• Identify when overfitting in decision trees
• Prevent overfitting with early stopping
 – Limit tree depth
 – Do not consider splits that do not reduce classification error
 – Do not split intermediate nodes with only few points
• Prevent overfitting by pruning complex trees
 – Use a total cost formula that balances classification error and tree complexity
 – Use total cost to merge potentially complex trees into simpler ones