

Machine Learning CS229/STATS229

Instructors: Moses Charikar, Tengyu Ma, and Chris Re

Hope everyone stays safe and healthy in these difficult times!

1. Administrivia

cs229.stanford.edu

(you may need to refresh to see the latest version)

2. Topics Covered in This Course

Differences From Previous Quarters

- Everything will be online --- lectures, Friday and discussion sections, office hours, discussions between students
 - > We strongly encourage you to study with others students
 - Technology: Zoom, Slack, ...
- Enrollments increased by 2X in the last two weeks;
 Overloaded CAs

- Course project is optional
- Homework can be submitted in pairs
- Take-home exams

Pre-requisite

- Probability (CS109 or STAT 116)
 - distribution, random variable, expectation, conditional probability, variance, density
- Linear algebra (Math 104, Math 113, or CS205)
 - matrix multiplication
 - eigenvector
- Basic programming (in Python)
- Will be reviewed in Friday sections (recorded)

This is a mathematically intense course. But that's why it's exciting and rewarding!

Honor Code

Do's

- form study groups (with arbitrary number of people); discuss and work on homework problems in groups
- write down the solutions independently
- write down the names of people with whom you've discussed the homework
- > read the longer description on the course website

Don'ts

> copy, refer to, or look at any official or unofficial previous years' solutions in preparing the answers

Honor Code for Submission In Pairs

- >Students submitting in a pair act as one unit
 - may share resources (such as notes) with each other and write the solutions together
- Both of the two students should fully understand all the answers in their submission
- ➤ Each student in the pair must understand the solution well enough in order to reconstruct it by him/herself

Course Project (Optional)

- ➤ We encourage you to form a group of 1-3 people
 - > same criterion for 1-3 people
- More information and previous course projects can be found on course website
- List of potential topics
 - Athletics & Sensing Devices
 - Audio & Music
 - Computer Vision
 - Finance & Commerce
 - General Machine Learning

- Life Sciences
- Natural Language
- Physical Sciences
- Theory
- Reinforcement Learning
- Covid-19

Other Information on Course Website cs229.stanford.edu

- Piazza:
 - All announcements and questions (unless you would only reach out to a subset of course staff)
 - For logistical questions, please take a look at course FAQ first
 - > Finding study groups friends
 - ➤ If you enrolled in the class but do not have access to Piazza, it should come within a day. If it has been more than that, send Kush an email
- Slack workspace
- Videos on canvas
- Course calendar: office hours and deadlines
- Gradescope
- Late days policy
- > FAQ on the course website

Teaching Assistants

Course Coordinator Swati Dube Batra

Course Advisor Anand Avati

Co-Head TA Kush Khosla

Co-Head TA Michael Zhu

Paul Caron Yining Chen

Taide Ding

Qijia Jiang

Fereshte Khani

Akshay Smit

Guanzhi Wang

Jingbo Yang

Victor Zhang

1. Administrivia cs229.stanford.edu

2. Topics Covered in This Course

Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

A. L. Samuel*

Some Studies in Machine Learning
Using the Game of Checkers. II—Recent Progress

Definition of Machine Learning

Tom Mitchell (1998): a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Experience (data): games played by the program (with itself)

Performance measure: winning rate

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

Unsupervised Supervised Learning Learning Reinforcement Learning

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

can also be viewed as tools/methods

Supervised Learning

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), \dots (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

Lecture 2&3: fitting $\lim ext y = 2$ Lecture 2&3: fitting y = 2

More Features

- Suppose we also know the lot size
- Task: find a function that maps

(size, lot size)
$$\rightarrow$$
 price features/input label/output $x \in \mathbb{R}^2$ $y \in \mathbb{R}$

- ➤ Dataset: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$ where $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$
- \succ "Supervision" refers to $y^{(1)}, \dots, y^{(n)}$

High-dimensional Features

- $\triangleright x \in \mathbb{R}^d$ for large d
- ➤ E.g.,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} --- \text{ living size}$$
--- lot size
--- # floors
--- condition
--- zip code
$$\vdots$$

$$\vdots$$

$$\vdots$$

- ➤ Lecture 6-7: infinite dimensional features
- Lecture 10-11: select features based on the data

Regression vs Classification

- \succ regression: if $y \in \mathbb{R}$ is a continuous variable
 - > e.g., price prediction
- > classification: the label is a discrete variable
 - > e.g., the task of predicting the types of residence

(size, lot size) \rightarrow house or townhouse?

Lecture 3&4: classification

Supervised Learning in Computer Vision

- Image Classification
 - $\triangleright x = \text{raw pixels of the image}, y = \text{the main object}$

Supervised Learning in Computer Vision

- Object localization and detection
 - $\rightarrow x = \text{raw pixels of the image}, y = \text{the bounding boxes}$

kit fox

airplane

croquette

frog

Supervised Learning in Natural Language Processing

Machine translation

- Note: this course only covers the basic and fundamental techniques of supervised learning (which are not enough for solving hard vision or NLP problems.)
- CS224N and CS231N would be more suitable if you are interested in the particular applications

Unsupervised Learning

Unsupervised Learning

- \triangleright Dataset contains no labels: $x^{(1)}$, ... $x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

Clustering

Clustering

➤ Lecture 12&13: k-mean clustering, mixture of Gaussians

Clustering Genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Latent Semantic Analysis (LSA)

documents

words

➤ Lecture 14: principal component analysis (tools used in LSA)

Image credit: https://commons.wikimedia.org/wiki/File:Topic_ detection in a document-word matrix.gif

Word Embeddings

Unlabeled dataset

Represent words by vectors

Clustering Words with Similar Meanings (Hierarchically)

	logic	graph	boson	polyester	acids
	deductive	subgraph	massless	polypropylene	amino
	propositional	bipartite	particle	resins	biosynthesis
	semantics	vertex	higgs	epoxy	peptide
tag	logic	graph theory	particle physics	polymer	biochemistry

Reinforcement Learning

Reinforcement Learning

> The algorithm can collect data interactively

Try the strategy and collect feedbacks

Improve the strategy based on the feedbacks

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

can also be viewed as tools/methods

Other Tools/Topics In This Course

Deep learning basics

- Introduction to learning theory
 - Bias variance tradeoff
 - > Feature selection
 - ML advice
- Broader aspects of ML
 - Robustness/fairness

Questions?

Thank you!