
CS229 Lecture notes

Tengyu Ma and Andrew Ng

May 13, 2019

Part IX

The EM algorithm

In the previous set of notes, we talked about the EM algorithm as applied to
fitting a mixture of Gaussians. In this set of notes, we give a broader view
of the EM algorithm, and show how it can be applied to a large family of
estimation problems with latent variables. We begin our discussion with a
very useful result called Jensen’s inequality

1 Jensen’s inequality

Let f be a function whose domain is the set of real numbers. Recall that
f is a convex function if f ′′(x) ≥ 0 (for all x ∈ R). In the case of f taking
vector-valued inputs, this is generalized to the condition that its hessian H
is positive semi-definite (H ≥ 0). If f ′′(x) > 0 for all x, then we say f is
strictly convex (in the vector-valued case, the corresponding statement is
that H must be positive definite, written H > 0). Jensen’s inequality can
then be stated as follows:

Theorem. Let f be a convex function, and let X be a random variable.
Then:

E[f(X)] ≥ f(EX).

Moreover, if f is strictly convex, then E[f(X)] = f(EX) holds true if and
only if X = E[X] with probability 1 (i.e., if X is a constant).

Recall our convention of occasionally dropping the parentheses when writ-
ing expectations, so in the theorem above, f(EX) = f(E[X]).

For an interpretation of the theorem, consider the figure below.

1

2

a E[X] b

f(a)

f(b)

f(EX)

E[f(X)]

f

Here, f is a convex function shown by the solid line. Also, X is a random
variable that has a 0.5 chance of taking the value a, and a 0.5 chance of
taking the value b (indicated on the x-axis). Thus, the expected value of X
is given by the midpoint between a and b.

We also see the values f(a), f(b) and f(E[X]) indicated on the y-axis.
Moreover, the value E[f(X)] is now the midpoint on the y-axis between f(a)
and f(b). From our example, we see that because f is convex, it must be the
case that E[f(X)] ≥ f(EX).

Incidentally, quite a lot of people have trouble remembering which way
the inequality goes, and remembering a picture like this is a good way to
quickly figure out the answer.
Remark. Recall that f is [strictly] concave if and only if −f is [strictly]
convex (i.e., f ′′(x) ≤ 0 or H ≤ 0). Jensen’s inequality also holds for concave
functions f , but with the direction of all the inequalities reversed (E[f(X)] ≤
f(EX), etc.).

2 The EM algorithm

Suppose we have an estimation problem in which we have a training set
{x(1), . . . , x(n)} consisting of n independent examples. We have a latent vari-
able model p(x, z; θ) with z being the latent variable (which for simplicity is
assumed to take finite number of values). The density for x can be obtained
by marginalized over the latent variable z:

p(x; θ) =
∑

z

p(x, z; θ) (1)

3

We wish to fit the parameters θ by maximizing the log-likelihood of the
data, defined by

ℓ(θ) =
n

∑

i=1

log p(x(i); θ) (2)

We can rewrite the objective in terms of the joint density p(x, z; θ) by

ℓ(θ) =
n

∑

i=1

log p(x(i); θ) (3)

=
n

∑

i=1

log
∑

z(i)

p(x(i), z(i); θ). (4)

But, explicitly finding the maximum likelihood estimates of the parameters
θ may be hard since it will result in difficult non-convex optimization prob-
lems.1 Here, the z(i)’s are the latent random variables; and it is often the case
that if the z(i)’s were observed, then maximum likelihood estimation would
be easy.

In such a setting, the EM algorithm gives an efficient method for max-
imum likelihood estimation. Maximizing ℓ(θ) explicitly might be difficult,
and our strategy will be to instead repeatedly construct a lower-bound on ℓ
(E-step), and then optimize that lower-bound (M-step).2

It turns out that the summation
∑n

i=1 is not essential here, and towards a
simpler exposition of the EM algorithm, we will first consider optimizing the
the likelihood log p(x) for a single example x. After we derive the algorithm
for optimizing log p(x), we will convert it to an algorithm that works for n
examples by adding back the sum to each of the relevant equations. Thus,
now we aim to optimize log p(x; θ) which can be rewritten as

log p(x; θ) = log
∑

z

p(x, z; θ) (5)

1It’s mostly an empirical observation that the optimization problem is difficult to op-
timize.

2Empirically, the E-step and M-step can often be computed more efficiently than op-
timizing the function ℓ(·) directly. However, it doesn’t necessarily mean that alternating
the two steps can always converge to the global optimum of ℓ(·). Even for mixture of
Gaussians, the EM algorithm can either converge to a global optimum or get stuck, de-
pending on the properties of the training data. Empirically, for real-world data, often EM
can converge to a solution with relatively high likelihood (if not the optimum), and the
theory behind it is still largely not understood.

4

Let Q be a distribution over the possible values of z. That is,
∑

z Q(z) = 1,
Q(z) ≥ 0).

Consider the following:3

log p(x; θ) = log
∑

z

p(x, z; θ)

= log
∑

z

Q(z)
p(x, z; θ)

Q(z)
(6)

≥
∑

z

Q(z) log
p(x, z; θ)

Q(z)
(7)

The last step of this derivation used Jensen’s inequality. Specifically,
f(x) = log x is a concave function, since f ′′(x) = −1/x2 < 0 over its domain
x ∈ R

+. Also, the term

∑

z

Q(z)

[

p(x, z; θ)

Q(z)

]

in the summation is just an expectation of the quantity [p(x, z; θ)/Q(z)] with
respect to z drawn according to the distribution given by Q.4 By Jensen’s
inequality, we have

f

(

Ez∼Q

[

p(x, z; θ)

Q(z)

])

≥ Ez∼Q

[

f

(

p(x, z; θ)

Q(z)

)]

,

where the “z ∼ Q” subscripts above indicate that the expectations are with
respect to z drawn from Q. This allowed us to go from Equation (6) to
Equation (7).

Now, for any distribution Q, the formula (7) gives a lower-bound on
log p(x; θ). There are many possible choices for the Q’s. Which should we
choose? Well, if we have some current guess θ of the parameters, it seems
natural to try to make the lower-bound tight at that value of θ. I.e., we will
make the inequality above hold with equality at our particular value of θ.

To make the bound tight for a particular value of θ, we need for the step
involving Jensen’s inequality in our derivation above to hold with equality.

3If z were continuous, then Q would be a density, and the summations over z in our
discussion are replaced with integrals over z.

4We note that the notion p(x,z;θ)
Q(z) only makes sense if Q(z) 6= 0 whenever p(x, z; θ) 6= 0.

Here we implicitly assume that we only consider those Q with such a property.

5

For this to be true, we know it is sufficient that the expectation be taken
over a “constant”-valued random variable. I.e., we require that

p(x, z; θ)

Q(z)
= c

for some constant c that does not depend on z. This is easily accomplished
by choosing

Q(z) ∝ p(x, z; θ).

Actually, since we know
∑

z Q(z) = 1 (because it is a distribution), this
further tells us that

Q(z) =
p(x, z; θ)

∑

z p(x, z; θ)

=
p(x, z; θ)

p(x; θ)

= p(z|x; θ) (8)

Thus, we simply set the Q’s to be the posterior distribution of the z’s given
x and the setting of the parameters θ.

Indeed, we can directly verify that when Q(z) = p(z|x; θ), then equa-
tion (7) is an equality because

∑

z

Q(z) log
p(x, z; θ)

Q(z)
=

∑

z

p(z|x; θ) log
p(x, z; θ)

p(z|x; θ)

=
∑

z

p(z|x; θ) log
p(z|x; θ)p(x; θ)

p(z|x; θ)

=
∑

z

p(z|x; θ) log p(x; θ)

= log p(x; θ)
∑

z

p(z|x; θ)

= log p(x; θ) (because
∑

z p(z|x; θ) = 1)

For convenience, we call the expression in Equation (7) the evidence

lower bound (ELBO) and we denote it by

ELBO(x;Q, θ) =
∑

z

Q(z) log
p(x, z; θ)

Q(z)
(9)

6

With this equation, we can re-write equation (7) as

∀Q, θ, x, log p(x; θ) ≥ ELBO(x;Q, θ) (10)

Intuitively, the EM algorithm alternatively updates Q and θ by a) setting
Q(z) = p(z|x; θ) following Equation (8) so that ELBO(x;Q, θ) = log p(x; θ)
for x and the current θ, and b) maximizing ELBO(x;Q, θ) w.r.t θ while fixing
the choice of Q.

Recall that all the discussion above was under the assumption that we
aim to optimize the log-likelihood log p(x; θ) for a single example x. It turns
out that with multiple training examples, the basic idea is the same and we
only needs to take a sum over examples at relevant places. Next, we will
build the evidence lower bound for multiple training examples and make the
EM algorithm formal.

Recall we have a training set {x(1), . . . , x(n)}. Note that the optimal choice
of Q is p(z|x; θ), and it depends on the particular example x. Therefore here
we will introduce n distributions Q1, . . . , Qn, one for each example x(i). For
each example x(i), we can build the evidence lower bound

log p(x(i); θ) ≥ ELBO(x(i);Qi, θ) =
∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

Taking sum over all the examples, we obtain a lower bound for the log-
likelihood

ℓ(θ) ≥
∑

i

ELBO(x(i);Qi, θ) (11)

=
∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

For any set of distributions Q1, . . . , Qn, the formula (11) gives a lower-
bound on ℓ(θ), and analogous to the argument around equation (8), the Qi

that attains equality satisfies

Qi(z
(i)) = p(z(i)|x(i); θ)

Thus, we simply set the Qi’s to be the posterior distribution of the z(i)’s
given x(i) with the current setting of the parameters θ.

Now, for this choice of the Qi’s, Equation (11) gives a lower-bound on
the loglikelihood ℓ that we’re trying to maximize. This is the E-step. In
the M-step of the algorithm, we then maximize our formula in Equation (11)
with respect to the parameters to obtain a new setting of the θ’s. Repeatedly
carrying out these two steps gives us the EM algorithm, which is as follows:

7

Repeat until convergence {

(E-step) For each i, set

Qi(z
(i)) := p(z(i)|x(i); θ).

(M-step) Set

θ := argmax
θ

n
∑

i=1

ELBO(x(i);Qi, θ)

= argmax
θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
. (12)

}

How do we know if this algorithm will converge? Well, suppose θ(t) and
θ(t+1) are the parameters from two successive iterations of EM. We will now
prove that ℓ(θ(t)) ≤ ℓ(θ(t+1)), which shows EM always monotonically im-
proves the log-likelihood. The key to showing this result lies in our choice of
the Qi’s. Specifically, on the iteration of EM in which the parameters had
started out as θ(t), we would have chosen Q

(t)
i (z(i)) := p(z(i)|x(i); θ(t)). We

saw earlier that this choice ensures that Jensen’s inequality, as applied to get
Equation (11), holds with equality, and hence

ℓ(θ(t)) =
n

∑

i=1

ELBO(x(i);Q
(t)
i , θ

(t)) (13)

The parameters θ(t+1) are then obtained by maximizing the right hand side
of the equation above. Thus,

ℓ(θ(t+1)) ≥
n

∑

i=1

ELBO(x(i);Q
(t)
i , θ

(t+1))

(because ineqaulity (11) holds for all Q and θ)

≥
n

∑

i=1

ELBO(x(i);Q
(t)
i , θ

(t)) (see reason below)

= ℓ(θ(t)) (by equation (13))

where the last inequality follows from that θ(t+1) is chosen explicitly to be

argmax
θ

n
∑

i=1

ELBO(x(i);Q
(t)
i , θ)

8

Hence, EM causes the likelihood to converge monotonically. In our de-
scription of the EM algorithm, we said we’d run it until convergence. Given
the result that we just showed, one reasonable convergence test would be
to check if the increase in ℓ(θ) between successive iterations is smaller than
some tolerance parameter, and to declare convergence if EM is improving
ℓ(θ) too slowly.

Remark. If we define (by overloading ELBO(·))

ELBO(Q, θ) =
n

∑

i=1

ELBO(x(i);Qi, θ) =
∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

(14)

then we know ℓ(θ) ≥ ELBO(Q, θ) from our previous derivation. The EM
can also be viewed an alternating maximization algorithm on ELBO(Q, θ),
in which the E-step maximizes it with respect to Q (check this yourself), and
the M-step maximizes it with respect to θ.

2.1 Other interpretation of ELBO

Let ELBO(x;Q, θ) =
∑

z Q(z) log
p(x,z;θ)
Q(z)

be defined as in equation (9). There
are several other forms of ELBO. First, we can rewrite

ELBO(x;Q, θ) = Ez∼Q[log p(x, z; θ)]− Ez∼Q[logQ(z)]

= Ez∼Q[log p(x|z; θ)]−DKL(Q‖pz) (15)

where we use pz to denote the marginal distribution of z (under the distri-
bution p(x, z; θ)), and DKL() denotes the KL divergence

DKL(Q‖pz) =
∑

z

Q(z) log
Q(z)

p(z)
(16)

In many cases, the marginal distribution of z does not depend on the param-
eter θ. In this case, we can see that maximizing ELBO over θ is equivalent
to maximizing the first term in (15). This corresponds to maximizing the
conditional likelihood of x conditioned on z, which is often a simpler question
than the original question.

Another form of ELBO(·) is (please verify yourself)

ELBO(x;Q, θ) = log p(x)−DKL(Q‖pz|x) (17)

where pz|x is the conditional distribution of z given x under the parameter
θ. This forms shows that the maximizer of ELBO(Q, θ) over Q is obtained
when Q = pz|x, which was shown in equation (8) before.

9

3 Mixture of Gaussians revisited

Armed with our general definition of the EM algorithm, let’s go back to our
old example of fitting the parameters φ, µ and Σ in a mixture of Gaussians.
For the sake of brevity, we carry out the derivations for the M-step updates
only for φ and µj, and leave the updates for Σj as an exercise for the reader.

The E-step is easy. Following our algorithm derivation above, we simply
calculate

w
(i)
j = Qi(z

(i) = j) = P (z(i) = j|x(i);φ, µ,Σ).

Here, “Qi(z
(i) = j)” denotes the probability of z(i) taking the value j under

the distribution Qi.
Next, in the M-step, we need to maximize, with respect to our parameters

φ, µ,Σ, the quantity

n
∑

i=1

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i);φ, µ,Σ)

Qi(z(i))

=
n

∑

i=1

k
∑

j=1

Qi(z
(i) = j) log

p(x(i)|z(i) = j;µ,Σ)p(z(i) = j;φ)

Qi(z(i) = j)

=
n

∑

i=1

k
∑

j=1

w
(i)
j log

1
(2π)d/2|Σj |1/2

exp
(

−1
2
(x(i) − µj)

TΣ−1
j (x(i) − µj)

)

· φj

w
(i)
j

Let’s maximize this with respect to µl. If we take the derivative with respect
to µl, we find

∇µl

n
∑

i=1

k
∑

j=1

w
(i)
j log

1
(2π)d/2|Σj |1/2

exp
(

−1
2
(x(i) − µj)

TΣ−1
j (x(i) − µj)

)

· φj

w
(i)
j

= −∇µl

n
∑

i=1

k
∑

j=1

w
(i)
j

1

2
(x(i) − µj)

TΣ−1
j (x(i) − µj)

=
1

2

n
∑

i=1

w
(i)
l ∇µl2µ

T
l Σ

−1
l x(i) − µTl Σ

−1
l µl

=
n

∑

i=1

w
(i)
l

(

Σ−1
l x(i) − Σ−1

l µl
)

Setting this to zero and solving for µl therefore yields the update rule

µl :=

∑n

i=1w
(i)
l x

(i)

∑n

i=1w
(i)
l

,

10

which was what we had in the previous set of notes.
Let’s do one more example, and derive the M-step update for the param-

eters φj. Grouping together only the terms that depend on φj, we find that
we need to maximize

n
∑

i=1

k
∑

j=1

w
(i)
j log φj.

However, there is an additional constraint that the φj’s sum to 1, since they
represent the probabilities φj = p(z(i) = j;φ). To deal with the constraint

that
∑k

j=1 φj = 1, we construct the Lagrangian

L(φ) =
n

∑

i=1

k
∑

j=1

w
(i)
j log φj + β(

k
∑

j=1

φj − 1),

where β is the Lagrange multiplier.5 Taking derivatives, we find

∂

∂φj
L(φ) =

n
∑

i=1

w
(i)
j

φj
+ β

Setting this to zero and solving, we get

φj =

∑n

i=1w
(i)
j

−β

I.e., φj ∝
∑n

i=1w
(i)
j . Using the constraint that

∑

j φj = 1, we easily find

that −β =
∑n

i=1

∑k

j=1w
(i)
j =

∑n

i=1 1 = n. (This used the fact that w
(i)
j =

Qi(z
(i) = j), and since probabilities sum to 1,

∑

j w
(i)
j = 1.) We therefore

have our M-step updates for the parameters φj:

φj :=
1

n

n
∑

i=1

w
(i)
j .

The derivation for the M-step updates to Σj are also entirely straightfor-
ward.

5We don’t need to worry about the constraint that φj ≥ 0, because as we’ll shortly see,
the solution we’ll find from this derivation will automatically satisfy that anyway.

11

4 Variational inference and variational auto-

encoder

Loosely speaking, variational auto-encoder [2] generally refers to a family of
algorithms that extend the EM algorithms to more complex models parame-
terized by neural networks. It extends the technique of variational inference
with the additional “re-parametrization trick” which will be introduced be-
low. Variational auto-encoder may not give the best performance for many
datasets, but it contains several central ideas about how to extend EM algo-
rithms to high-dimensional continuous latent variables with non-linear mod-
els. Understanding it will likely give you the language and backgrounds to
understand various recent papers related to it.

As a running example, we will consider the following parameterization of
p(x, z; θ) by a neural network. Let θ be the collection of the weights of a
neural network g(z; θ) that maps z ∈ R

k to R
d. Let

z ∼ N (0, Ik×k) (18)

x|z ∼ N (g(z; θ), σ2Id×d) (19)

Here Ik×k denotes identity matrix of dimension k by k, and σ is a scalar that
we assume to be known for simplicity.

For the Gaussian mixture models in Section 3, the optimal choice of
Q(z) = p(z|x; θ) for each fixed θ, that is the posterior distribution of z,
can be analytically computed. In many more complex models such as the
model (19), it’s intractable to compute the exact the posterior distribution
p(z|x; θ).

Recall that from equation (10), ELBO is always a lower bound for any
choice of Q, and therefore, we can also aim for finding an approximation of
the true posterior distribution. Often, one has to use some particular form
to approximate the true posterior distribution. Let Q be a family of Q’s that
we are considering, and we will aim to find a Q within the family of Q that is
closest to the true posterior distribution. To formalize, recall the definition
of the ELBO lower bound as a function of Q and θ defined in equation (14)

ELBO(Q, θ) =
n

∑

i=1

ELBO(x(i);Qi, θ) =
∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

Recall that EM can be viewed as alternating maximization of ELBO(Q, θ).
Here instead, we optimize the EBLO over Q ∈ Q

max
Q∈Q

max
θ

ELBO(Q, θ) (20)

12

Now the next question is what form of Q (or what structural assumptions
to make aboutQ) allows us to efficiently maximize the objective above. When
the latent variable z are high-dimensional discrete variables, one popular as-
sumption is the mean field assumption, which assumes that Qi(z) gives a
distribution with independent coordinates, or in other words, Qi can be de-
composed into Qi(z) = Q1

i (z1) · · ·Q
k
i (zk). There are tremendous applications

of mean field assumptions to learning generative models with discrete latent
variables, and we refer to [1] for a survey of these models and their impact
to a wide range of applications including computational biology, computa-
tional neuroscience, social sciences. We will not get into the details about
the discrete latent variable cases, and our main focus is to deal with contin-
uous latent variables, which requires not only mean field assumptions, but
additional techniques.

When z ∈ R
k is a continuous latent variable, there are several decisions to

make towards successfully optimizing (20). First we need to give a succinct
representation of the distribution Qi because it is over an infinite number of
points. A natural choice is to assume Qi is a Gaussian distribution with some
mean and variance. We would also like to have more succinct representation
of the means of Qi of all the examples. Note that Qi(z

(i)) is supposed to
approximate p(z(i)|x(i); θ). It would make sense let all the means of the Qi’s
be some function of x(i). Concretely, let q(·;φ), v(·;φ) be two functions that
map from dimension d to k, which are parameterized by φ and ψ, we assume
that

Qi = N (q(x(i);φ), diag(v(x(i);ψ))2) (21)

Here diag(w) means the k × k matrix with the entries of w ∈ R
k on the

diagonal. In other words, the distribution Qi is assumed to be a Gaussian
distribution with independent coordinates, and the mean and standard de-
viations are governed by q and v. Often in variational auto-encoder, q and v
are chosen to be neural networks.6 In recent deep learning literature, often
q, v are called encoder (in the sense of encoding the data into latent code),
whereas g(z; θ) if often referred to as the decoder.

We remark that Qi of such form in many cases are very far from a good
approximation of the true posterior distribution. However, some approxima-
tion is necessary for feasible optimization. In fact, the form of Qi needs to
satisfy other requirements (which happened to be satisfied by the form (21))

Before optimizing the ELBO, let’s first verify whether we can efficiently
evaluate the value of the ELBO for fixed Q of the form (21) and θ. We

6q and v can also share parameters. We sweep this level of details under the rug in this
note.

13

rewrite the ELBO as a function of φ, ψ, θ by

ELBO(φ, ψ, θ) =
n

∑

i=1

Ez(i)∼Qi

[

log
p(x(i), z(i); θ)

Qi(z(i))

]

, (22)

where Qi = N (q(x(i);φ), diag(v(x(i);ψ))2)

Note that to evaluate Qi(z
(i)) inside the expectation, we should be able to

compute the density of Qi. To estimate the expectation Ez(i)∼Qi
, we

should be able to sample from distribution Qi so that we can build an
empirical estimator with samples. It happens that for Gaussian distribution
Qi = N (q(x(i);φ), diag(v(x(i);ψ))2), we are able to be both efficiently.

Now let’s optimize the ELBO. It turns out that we can run gradient
ascent over φ, ψ, θ instead of alternating maximization. There is no strong
need to compute the maximum over each variable at a much greater cost. (For
Gaussian mixture model in Section 3, computing the maximum is analytically
feasible and relatively cheap, and therefore we did alternating maximization.)
Mathematically, let η be the learning rate, the gradient ascent step is

θ := θ + η∇θELBO(φ, ψ, θ)

φ := φ+ η∇φELBO(φ, ψ, θ)

ψ := ψ + η∇ψELBO(φ, ψ, θ)

Computing the gradient over θ is simple because

∇θELBO(φ, ψ, θ) = ∇θ

n
∑

i=1

Ez(i)∼Qi

[

log p(x(i), z(i); θ)

Qi(z(i))

]

= ∇θ

n
∑

i=1

Ez(i)∼Qi

[

log p(x(i), z(i); θ)
]

=
n

∑

i=1

Ez(i)∼Qi

[

∇θ log p(x
(i), z(i); θ)

]

, (23)

But computing the gradient over φ and ψ is tricky because the sampling
distribution Qi depends on φ and ψ. (Abstractly speaking, the issue we
face can be simplified as the problem of computing the gradient Ez∼Qφ

[f(φ)]
with respect to variable φ. We know that in general, ∇Ez∼Qφ

[f(φ)] 6=
Ez∼Qφ

[∇f(φ)] because the dependency of Qφ on φ has to be taken into ac-
count as well.)

The idea that comes to rescue is the so-called re-parameterization

trick: we rewrite z(i) ∼ Qi = N (q(x(i);φ), diag(v(x(i);ψ))2) in an equivalent

14

way:

z(i) = q(x(i);φ) + v(x(i);ψ)⊙ ξ(i) where ξ(i) ∼ N (0, Ik×k) (24)

Here x ⊙ y denotes the entry-wise product of two vectors of the same
dimension. Here we used the fact that x ∼ N(µ, σ2) is equivalent to that
x = µ+ξσ with ξ ∼ N(0, 1). We mostly just used this fact in every dimension
simultaneously for the random variable z(i) ∼ Qi.

With this re-parameterization, we have that

Ez(i)∼Qi

[

log
p(x(i), z(i); θ)

Qi(z(i))

]

(25)

= Eξ(i)∼N (0,1)

[

log
p(x(i), q(x(i);φ) + v(x(i);ψ)⊙ ξ(i); θ)

Qi(q(x(i);φ) + v(x(i);ψ)⊙ ξ(i))

]

It follows that

∇φEz(i)∼Qi

[

log
p(x(i), z(i); θ)

Qi(z(i))

]

= ∇φEξ(i)∼N (0,1)

[

log
p(x(i), q(x(i);φ) + v(x(i);ψ)⊙ ξ(i); θ)

Qi(q(x(i);φ) + v(x(i);ψ)⊙ ξ(i))

]

= Eξ(i)∼N (0,1)

[

∇φ log
p(x(i), q(x(i);φ) + v(x(i);ψ)⊙ ξ(i); θ)

Qi(q(x(i);φ) + v(x(i);ψ)⊙ ξ(i))

]

We can now sample multiple copies of ξ(i)’s to estimate the the expecta-
tion in the RHS of the equation above.7 We can estimate the gradient with
respect to ψ similarly, and with these, we can implement the gradient ascent
algorithm to optimize the ELBO over φ, ψ, θ.

There are not many high-dimensional distributions with analytically com-
putable density function are known to be re-parameterizable. We refer to [2]
for a few other choices that can replace Gaussian distribution.

References

[1] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational in-
ference: A review for statisticians. Journal of the American Statistical

Association, 112(518):859–877, 2017.

[2] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

7Empirically people sometimes just use one sample to estimate it for maximum com-
putational efficiency.

