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• This lecture is filled with personal opinion informed by building production 
and clinical prototypes (and research too!).

• It is high level and presents some difficult, raw material.

• Improve over time: include ideas folks have told me were helpful to them.



•Will describe errors that I and collaborators have made or pointed out.
• Goal is NOT to cast aspersions, but to get to better practice. 
• Many of these folks are my intellectual idols.
• The worst errors are my own!



Phases of ML projects

• Do you really want an ML system? 

• Ok, so you want to train a model. 
It’s not working well… now what?

• Now you have to live with an ML 
model and its eco system…



A Running Example

• You want to build a spam 
detector.

• There are lots of types of 
spam, think of email for 
concreteness.



7 Steps of ML Systems.



The 7 steps Overview

• Step 1: Acquire Data
• Step 2: Look at your data* -- after every step.
• Step 3: Create train/dev/test splits
• Step 4: Create/Refine a specification
• Step 5: Build model (simplest that works!)
• Step 6: Measurement
• Step 7: Repeat.



Step 1: Acquire Data



You need realistic
spam (and not spam).

• Ideal data sampled from the data your 
SPAM product will be run on.

• Ideal not always available.
• Cold-start. Feature doesn’t exist yet!
• Legal/ethical issues to look at data.

• You will get it wrong on 1st try.



Data Artifacts are hard.

Kuehlkamp et al. Gender-from-Iris or Gender from-Mascara
Can we use transformations to make them more robust?

Upshot: 
Picked up on 

mascara

Any model may pick out unintended signal.  
Modern, deep models may pick out more unintended signal.

Hidden data artifacts are very challenging!



Step 2: Look at the data



Look at your data.

• You have some spam, look it at it!
• If needed, build tools to look at your 

data.
• Spam from Europe different than 

from Africa? from US?
• Spam to .edu different than .com?

• “Become one with the data” – Karpathy. 

• Do this at every stage!



Have the right people look at your data



Expertise is often required!
Pneumonia Detection

(Chest Drains)
No Drain

Melanoma Recognition 
(Surgical Marks)

With Drain

Image Credits 
Valchanov, Kamen, Nicola Jones, and Charles W. Hogue, eds. Core Topics in Cardiothoracic Critical Care. Cambridge University Press, 2018.
Winkler, Julia K., et al. "Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning 
convolutional neural network for melanoma recognition." JAMA dermatology (2019).

Pneuomthorax has 0.94 AUC—with chest drains—but 
0.77 without… Chest drain means already treated!



For more detail see…

Gustavo Carneiro (Adelaide) Luke Oakden-Rayner (Adelaide) Jared Dunnmon (Stanford)

https://lukeoakdenrayner.wordpress.com/2019/10/14/improving-medical-ai-safety-by-addressing-hidden-stratification/

https://lukeoakdenrayner.wordpress.com/2019/10/14/improving-medical-ai-safety-by-addressing-hidden-stratification/


Step 3: Train/Dev/Test Split



Partitioning Data: Train, Test, and Validation

(1) Fit model to the training dataset (2) Fit hyperparameters 
to the validation (or 

development) dataset

(3) Test model 
performance 

on the test set

Train Validation 
(Dev) Test

Critical to avoid leakage / adaptive overfitting



What makes a good split?

• Ideal: Train, test, & dev randomly sampled
• Allows us to say train quality is 

approximately test quality

• Test is a proxy for the real world!
• We’ll talk more about this later…

• Challenge: Leakage. 
• (Nearly) same example in train and dev.
• Causes performance to be overstated!

• Eg., same senders in train and test?



Step 4: Create a specification



Create a specification

• Machine learning doesn’t obviate the 
need to know what you are building.
• What is SPAM? Maybe I like ads for 

low low rates?

• A good specification has little ambiguity. 
• What level of expertise is required to 

understand it?

• Your specification must be embodied in 
a set of examples. A test set!

A test set is an 
important part of 
your specification.



Quick and Dirty Test: 
Inner Annotator 
Agreement

• You write down your notion of SPAM. Select N randomly 
selected examples. Give to three different annotators. 
• Inner annotator agreement. How often do they agree?

• Let’s say they agree 95% of the time—sounds great!
• The meaningless accuracy problem. Can you build a product 

with greater than 95% accuracy against this spec? 

• Examine the spec & disagreement cases.
• Train annotators or change spec?
• If a humans can’t agree, the machine is going to have trouble…



Subtle 
Problem: 
Consistency in 
test sets

Consider following protocol.
• Every day, sample data
• Send examples to crowd
• Get grades back

NB: This is not a test set!
• Specifications are edited and curated!

Problem.

• Variance of crowd 3-5% (never get better).
• improvements of 1-2%, we’re toast!



Subtle Problem: Spec creep

• Warning: Tempted when answer is “pretty good” to say yes–for 
classification this must be precise or you accrue debt.

• Spec: Unsolicited drug ads should be marked drug spam.
• Spam for vitamins comes in—and is successfully filtered.
• This answer is marked as drugs and filtered.
• Answer is useful, but allowing it may cause scope creep.
• If you want, it revise the specification.



Step 5: Implement simplest possible model



Keep it simple!

• If python code can get 90% accuracy, use it!
• If python code can get 100% accuracy, use it!
• ML shines on a class problems:

• That can be precisely specified but 
• Writing down program is prohibitively hard

• Avoid getting bogged down in models, use them 
to understand the data!



Value of Baselines

• Someone will ask if your change is worth 
it, be prepared.
• If your fancy engine buys 0.1% but runs 

1000x more slowly…

• Build simpler methods even after fancy 
models. Often use deep models to “come 
up with features” – by looking at output!
•Models are a tool to understand data!



Ablation studies.

• You’ve built up a model, it has many 
different components.
• Which matter? 
• which are stable?

• Remove one feature at a time!
• Adding features + baseline could 

overestimate overlap. How?

• Measure performance.
• Critical for research!



Step 6: Measure the output!



Simple descriptive 
dashboards

• Challenge: Don’t make the same 
mistake twice! 
• Measure end-to-end quality metrics.

• Challenge: catch new mistakes, asap.
• Harder! 
• Measure simple things

• How many entities per sentence? How long are the 
sentences? How many verbs? Keywords per sentence.

• Slice by time. Is your SPAM changing over time?



Avoid Known mistakes
Slice-based Monitoring.

• Overall performance may not be as 
critical as important “slice”. 
• “Call mom” should work
• More complex queries may be less 

expected.

• Record & scoreboard on these slices.

• Your monitoring should have support for 
fine-grained reporting!



Challenge: Avoid 
unknown mistakes

• Distribution shift is a real issue.
• Popularity Shift/Cold-start. 

• You release a feature, queries that weren’t popular are 
now very popular. 

• Old score says ”we’re great”, but felt experience is awful.
• Remedy: Hopefully, you knew this slice was coming and 

you monitored it proactively.

• Input Shift. Your input changes in some way.
• Much harder to catch in my experience…
• More next!

This is incredibly hard! No ideal solutions in industry... 
I’ve gotten this very wrong…



Courtesy: Keith Winstein



Courtesy: Keith Winstein
What went wrong?!?



Postmortem:
Three identified issues—many remain!
• Twitter changed the text filtering model reflecting business priorities.

• This is common in most systems! How do we control for it?
• Cope retraining—we imperfectly understand substrate and it can change!

• Model sensitive to outliers “Gray swans”
• Mined keywords like “pink slip” were used as part of an advertising campaign.
• Median regularization to deal with feature spikes.

• Economic reality changed in 2014
• Losing a job meant you quickly got a new job—stale more quickly. 
• Used a technique called PCA that we’ll see in a few lectures to help…

http://web.eecs.umich.edu/~michjc/cafarella-nas-census.pptx



http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html

Courtesy: Keith Winstein

http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html


Labels & Input Drift 
(change) over time.

Automatic monitoring matters.

Adapting to customer taste change.

This is REALLY hard



Step 7: Repeat! (And Look at your data!)



The 7 steps recap

• Step 1: Acquire Data
• Step 2: Look at your data* -- after every step.
• Step 3: Create train/dev/test splits
• Step 4: Create/Refine a specification
• Step 5: Build model (simplest that works!)
• Step 6: Measurement
• Step 7: Repeat.



I have yet to see anyone get preceding steps 
right on first try. Build quickly and iterate.

A well running ML system is a 
rewritten poorly running ML system.



More detailed version

• Specification Challenges

• Model Training and Performance Diagnostics

• Monitoring Challenges

• Issues in Shipping to Production/Use



Specification



Types of Errors in Specification

• Class schema issues
• Two distinguishable classes merged as one
• One class split into two now indistinguishable class

• Unknowable class.
• Information to distinguish two different cases is not available to the model
• More common than you would think!

• Unrealized structure between classes
• For example, fine-grained errors may not count as much as coarse-grained errors.

• Test set label variance
• If this (e.g. inter-annotator disagreement) is > the error deltas being tested for, nonsensical!

• Change between test set versions
• Test sets need to be regularly “refreshed”- need to watch for changes between versions!
• More later…



Types of Errors in Specification

• Class schema issues
• Two distinguishable classes merged as one
• One class split into two now indistinguishable class

• Unknowable class.
• Information to distinguish two different cases is not available to the model
• More common than you would think!

• Unrealized structure between classes
• For example, fine-grained errors may not count as much as coarse-grained errors.

• Test set label variance
• If this (e.g. inter-annotator disagreement) is > the error deltas being tested for, 

nonsensical!
• Change between test set versions

• Test sets need to be regularly “refreshed”- need to watch for changes between 
versions!



Class Confusion Matrices

• See at a glance, our accuracy is pretty high (look at diagonal)—but…
• Discuss our false positive v. false negative rates?

• What would happen if we added spear phishing? Can help us debug specification! 
• Examine “top confused classes” if you have many
• Common when building big ML models collaboratively. (duplicate names for a concept)
• Subtle distinctions are good!

• Crisp. If they manifest differently in data and we can define this difference.
• AND we have enough data.

Class LoanSpam Class Phishing Class Good Email

Predicts LoanSpam 1000 10 50

Predicts Phishing 45 505 30

Predicts Good Email 7 8 2000



Types of Errors in Specification

• Class schema issues
• Two distinguishable classes merged as one
• One class split into two now indistinguishable class

• Unknowable class.
• Information to distinguish two different cases is not available to the model
• More common than you would think!

• Unrealized structure between classes
• For example, fine-grained errors may not count as much as coarse-grained errors.

• Test set label variance
• If this (e.g. inter-annotator disagreement) is > the error deltas being tested for, 

nonsensical!
• Change between test set versions

• Test sets need to be regularly “refreshed”- need to watch for changes between 
versions!



Spoiler: It’s a pipe. 
(Your Ground Truth Contains Errors)
• “ground truth” is 

constructed.
• Fix the specification..
• Fix the data
• It is a curated resource!

• Measure Error! If your error 
rate in GT is 3%, then 1% 
change may not be 
meaningful.

“This is not a pipe.”



Look at the data! Nothing fancy.

• Simple tool….

Labeling party!



The art of 
errors 

• Split the error buckets into buckets such that 
there is some systematic information the 
model is missing.

• A good bucket for “relationship extraction”
• “Her husband, Barack Obama,…”
• “Her sister, Venus Williams…”
• “His wife, Serena Williams…”
• Aha! Missing “relationship name and appositive”

• It’s an art, if you can’t group buckets—you 
may be tapped out!
• Convert high-level insight into features is an art 

and skill—practice it!



Selecting more labels

• It’s all about sampling!

• Uniform Random Sampling
• Advantage, you’ll improve the overall error
• Statistically safe.

• Importance-based sampling.
• Can be cost effective—if your class only appears 1 of 

10k times, would be expensive!
• Pick near misses? “more informative”
• Don’t use for evaluation by itself. Why?



Error Analysis in the Era of Deep Learning

• Error bucketing is still critical. 

• Minor miracle: often, you can add labels 
to drive model to predict the right class!

• Selecting the right examples is 
important.



Types of Errors in Specification

• Class schema issues
• Two distinguishable classes merged as one
• One class split into two now indistinguishable class

• Unknowable class.
• Information to distinguish two different cases is not available to the model
• More common than you would think!

• Unrealized structure between classes
• For example, fine-grained errors may not count as much as coarse-grained errors.

• Test set label variance
• If this (e.g. inter-annotator disagreement) is > the error deltas being tested for, 

nonsensical!
• Change between test set versions

• Test sets need to be regularly “refreshed”- need to watch for changes between 
versions!



What if we sampled a new test set according 
to the same specification as the original?

Expect the same outcome!



No real evidence of adaptive overfitting!

But specification and distribution shift hit you! Same on ImageNet



Model Diagnostics



You want to build an ML model

Which should you build first?
…try simple methods first… really still debugging. 

Best ML folks treat models as a way to understand.



What to build?

• Build simplest thing first.
• Sometimes what you have code laying around… iterate quickly!

• Linear or logistic regression w/ simple features, 
• You know it’s converging, easy to setup, lots of packages that support it.
• It runs fast! Quick iteration!
• Features are easier to understand, add information, do error analysis.
• Good baselines for future work
• Many projects get good enough results here, and move on.
• Or, more often, learn that they didn’t understand the problem and refine!



Debugging Learning 
Algorithms

• Your goal is to build an ad 
spam detector. 
• You run a logistic 

regression algorithm. 
• Sadly, it’s error is too high!
•What do you do?



What could be wrong?

• Maybe it’s the data or your features?
• Try getting more training data.
• Try a smaller set of features?
• Try adding more features?

• Maybe it’s the optimization algorithm?
• Run GD a little while longer….
• Try a different method, SGD, GD, Newton?

• Maybe it’s the hyperparameters?
• Different value of regularizer? 

• Try using a different model!



Just like compiling!

• Could hit train model, try it, and run again!
• Or you could develop diagnostics to help you 

understand.

• Recall simple metrics, these catch data prep 
bugs (very nasty)
• Bias-variance provides a set of diagnostics!

We’ll cover some diagnostics that have helped us.



Diagnostic: Test versus Train Score.

Train Error
Test Error

Training Set Size

If error is too high: 
model needs more capacity!

Fix: add features, more complex model

OK: Training set size, Optimization algo.

“Test=Train”



Diagnostic: Test versus Train Score.

Train Error

Test Error

Training Set Size

Model: model needs more data, 
or less complex model?

Fix: Training set size, model too complex?

OK: Optimization algo.

“Performance Gap”



Variance Diagnostic

• Variance diagnostics.
• Sample data set (k-fold cross validation)
• Train on different folds.

• If the dev scores diff are small relative to 
your target error, you’re OK!
• If you’re target error is 10%, and your variance ~ 1% 

fixing variance doesn’t matter!

• If larger, too little data or algo. instability!



Diagnostic: Calibration Plots!

• Your spam detector uses logistic regression (or softmax last layer)

It’s calibrated. 

This bump means there is a lurking class! 
Need more features. “Calibration Bump”



What could be wrong?

• Maybe it’s the data or your features?
• Try getting more training data.
• Try a smaller set of features?
• Try adding more features?

• Maybe it’s the hyperparameters?
• Different value of regularizer? 

• Try using a different model!

Performance Gap

Performance Gap
Train = Test, Calibration bump



Really rough guidance

• If your test error is OK, good for now!

• Else, if train == test 
• Fix: you need a more complex model.

• If train  < test you’re overfitting. 
• Fix: Regularize, less complex model

• If train oscillates wildly, you have a problem 
with your optimization algorithm.

• If train goes down lower with method A than 
method B, then prefer method A J



They’re all just 
weights.

• Train another model on the same features.
• SVM, logistic, even linear—as long as 

• Suppose new model does better but you 
want to use the old model!

• You can plug in your new model into your 
old objective. 
• If loss is lower à optimization problem!
• If loss is higher -> model problem. (harder)
• Examine where they differ can reveal capacity 

differences.



Diagnostics Summary

•Some I’ve used or 
seen teams use well.
•Cleverness to come up 
with your own.
•Think “unit testing”. 
It’s engineering.



Advanced Techniques and Recent Studies



Selecting features

• You derived some of the L1 technique (Lasso).
• Recall: Selects a sparse model weights..

• It enables you to select models, this changes 
how you build the models—often toss in many 
features, let it pick!

• You can freeze known good features, select 
among new features.



Lasso Path
Main idea: Sweep the regularize 
parameter for L1, train the model, 
see when features turn on!

Useful to see how 
valuable each feature 

is: Great tool!

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html
http://statweb.stanford.edu/~tibs/ftp/lars.pdf

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html
http://statweb.stanford.edu/~tibs/ftp/lars.pdf


Various techniques for limited labeled data

• Active learning: Select points to 
label more intelligently
• Semi-supervised learning: Use 

unlabeled data as well
• Transfer learning: Transfer from 

one training dataset to a new 
task
• Weak supervision: Label data in 

cheaper, higher-level ways

https://www.snorkel.org/blog/weak-supervision

More in lecture 20



Transfer learning: Basic Idea
AlexNet

Cat has highest 
value.

(dim 763)

1000 classes in ImageNet, 
votes how likely in each class

A vector ”representing” the image, 
features for “logistic regression“.

Abstractly: A model can be viewed as a 
function from image to a vector. 

Transfer learning Idea: Can we just 
replace the last layer with our 
classes, and just retrain that part?

Challenge: Want to classify our data into 
new classes--don’t have 1M (picture, 
label) pairs. Not enough data!



Transfer learning for language

• Train (huge) models offline for language.
• ELMO – UW, Allen
• BERT -- Google
• GPT-2 -- OpenAI
• Roberta – Facebook
• XLNet – Google/CMU

• Use trained representation and simple refinement
• A great library with tutorials.
• Outstanding way to get started with little data.

• Key question: If you have enough data for your task, pretraining shouldn’t help. 
• Where is the cross over point? What is the performance cost?

https://huggingface.co/transformers/

https://huggingface.co/transformers/


Weak Supervision Ex: Snorkel
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Users write 
labeling functions 
to heuristically 
label data

Snorkel 
cleans and 
combines the 
LF labels

The resulting 
training database 
used to train an 
ML model 

TRAINING 
DATABASE

END MODEL

Note: No hand-labeled training data!

def LF_pneumo(x):
if re.search(r’pneumo.*’, X.text):

return “ABNORMAL”

def LF_short_report(x):
if len(X.words) < 15:

return “NORMAL”

def LF_ontology(x):
if DISEASES & X.words:

return “ABNORMAL”

def LF_off_shelf_classifier(x):
if off_shelf_classifier(x) == 1:

return “NORMAL”

LABELING FUNCTIONS
UNLABELED DATA



Can subsume noisy “crowd” labeling as well
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TRAINING 
DATABASE

END MODEL

“Hybrid” approaches use programmatic + 
human supervision

def LF_pneumo(x):
if re.search(r’pneu.*’, X):

return “ABNORMAL”

def LF_ontology(x):
if DISEASES & X.words:

return “ABNORMAL”



Massive Multi-Task Learning (MMTL)
Primary Task

Capitalizing on supervision at every level of granularity

Auxiliary Tasks
(Token-level)

Query ParsingPOS tagging Entity tagging

Critical Slices

Personal Queries Sensitive Topics

(Data subsets)
Related Task

Query Parsing 2



Production Issues



Last line of defense: Caches and Overrides!

• Keep in mind, ML helps you build software. It’s 
usually not a goal in and of itself.

• ML is not infallible.
• If you can write it easily, just do it!
• If it makes a mistake, put it in a cache!

• Danger: you incur technical debt or you avoid fixing 
actual issues in your model.

• Use sparingly, but used in most production systems.

• Hot fixes!



Hidden Tech



Hidden technical debt.



Code is nasty

• In conventional code,  the 
person who wrote it usually 
knows why it works—but 
maybe no one else!

• In ML code, no one may 
know!



Hidden Benefit of 
Neural Nets

• Representation and normalization code is nasty. 
I’ve yet to see someone proud of it.
• In a NN, you relearn it, and so don’t have to 

maintain it.

• ML is eating software!

• This is called Software 2.0
• Andrej Karpathy
• Disclosure: We also work on this a lot!



Raising abstraction and focus on monitoring 
rather than building models.

https://arxiv.org/abs/1909.05372

https://arxiv.org/abs/1909.05372


Reproducibility

Great talk! Highly recommend it 
(Keynote last year—Kunle was great too!)



Reproducibility

• Your goal is to avoid fooling yourself.
• It will be hard! You’re clever!

• Meaningless change causes a quality change: 
Random seeds shouldn’t matter, but they lead to 
different outcomes!

• We separate train and test in an effort to not be 
wrong.

• No silver bullet, diligence everywhere.



Summary



Summary

• Measure twice, cut once. Don’t bash, try to setup diagnostics.
• Ideally in code! You want to reuse these!

• Look at your data and your predictions. No substitute.

• ML systems are used to make it easier to write code, it’s a “high-
interest credit card of technical debt.”


