Midterm Reviews (CS 229/ STATS 229)

Stanford University
slides adapted from previous iterations of the course

23rd October, 2020
Outline

1. Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM

2. Neural Networks

3. Unsupervised Learning
Outline

1. Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM

2. Neural Networks

3. Unsupervised Learning
Optimization Methods

Gradient and Hessian (differentiable function $f : \mathbb{R}^d \rightarrow \mathbb{R}$)

$$\nabla_x f = \left[\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_d} \right]^T \in \mathbb{R}^d$$ \hspace{1cm} \text{(Gradient)}

$$\nabla^2_x f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix} \in \mathbb{R}^{d \times d}$$ \hspace{1cm} \text{(Hessian)}

Gradient Descent and Newton’s Method (objective function $J(\theta)$)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_\theta J(\theta^{(t)})$$ \hspace{1cm} \text{(Gradient descent)}

$$\theta^{(t+1)} = \theta^{(t)} - \left[\nabla^2_\theta J(\theta^{(t)}) \right]^{-1} \nabla_\theta J(\theta^{(t)})$$ \hspace{1cm} \text{(Newton’s method)}
Least Square—Gradient Descent

- Model: \(h_\theta (x) = \theta^T x \)
- Training data: \(\{ (x^{(i)}, y^{(i)}) \}^n_{i=1}, \ x^{(i)} \in \mathbb{R}^d \)
- Loss: \(J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)})^2 \)
- Update rule:
 \[
 \theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}
 \]

Stochastic Gradient Descent (SGD)

Pick one data point \(x^{(i)} \) and then update:

\[
\theta^{(t+1)} = \theta^{(t)} - \alpha \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}
\]
Least Square—Closed Form

- Loss in matrix form: \(J(\theta) = \frac{1}{2} \|X\theta - y\|_2^2 \), where \(X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n \)
- Normal Equation (set gradient to 0):
 \[
 X^T (X\theta^* - y) = 0
 \]
- Closed form solution:
 \[
 \theta^* = \left(X^TX\right)^{-1}X^Ty
 \]
Logistic Regression

A binary classification model and \(y^{(i)} \in \{0, 1\} \)

- Assumed model:

\[
p(y \mid x; \theta) = \begin{cases}
g_\theta(x) & \text{if } y = 1 \\
1 - g_\theta(x) & \text{if } y = 0
\end{cases}, \quad \text{where } g_\theta(x) = \frac{1}{1 + e^{-\theta^T x}}
\]

- Log-likelihood function:

\[
\ell(\theta) = \sum_{i=1}^{n} \log p(y^{(i)} \mid x^{(i)}; \theta) \\
= \sum_{i=1}^{n} \left[y^{(i)} \log g_\theta(x^{(i)}) + (1 - y^{(i)}) \log(1 - g_\theta(x^{(i)})) \right]
\]

- Find parameters through maximizing log-likelihood, \(\max_\theta \ell(\theta) \) (in Pset1).
The Exponential Family

Definition
Probability distribution (with natural parameter η) whose density (or mass function) can be written into the following form

$$p(y; \eta) = b(y) \exp \left(\eta^T T(y) - a(\eta) \right)$$

Example
Bernoulli distribution:

$$p(y; \phi) = \phi^y (1 - \phi)^{1-y} = \exp \left(\left(\log \left(\frac{\phi}{1 - \phi} \right) \right) y + \log (1 - \phi) \right)$$

$$\Rightarrow b(y) = 1, \quad T(y) = y, \quad \eta = \log \left(\frac{\phi}{1 - \phi} \right), \quad a(\eta) = \log (1 + e^\eta)$$
The Exponential Family

More Examples
Categorical distribution, Poisson distribution, (Multivariate) normal distribution, etc.

Properties (In Pset1)
- \(E[T(Y); \eta] = \nabla_\eta a(\eta) \)
- \(\text{Var}(T(Y); \eta) = \nabla^2_\eta a(\eta) \)

Non-exponential Family Distribution
Uniform distribution over interval \([a, b]\):

\[
p(y; a, b) = \frac{1}{b - a} \cdot 1_{\{a \leq y \leq b\}}
\]

Reason: \(b(y) \) cannot depend on parameter \(\eta \).
The Generalized Linear Model (GLM)

Components

- Assumed model: $p(y | x; \theta) \sim \text{ExponentialFamily} (\eta)$ with $\eta = \theta^T x$
- Predictor: $h(x) = \mathbb{E}[T(Y); \eta] = \nabla_{\eta} a(\eta)$.
- Fitting through maximum likelihood:

$$\max_{\theta} \ell(\theta) = \max_{\theta} \sum_{i=1}^{n} p(y^{(i)} | x^{(i)}; \eta)$$

Examples

- GLM under Bernoulli distribution: Logistic regression
- GLM under Poisson distribution: Poisson regression (in Pset1)
- GLM under Normal distribution: Linear regression
- GLM under Categorical distribution: Softmax regression
Outline

1. Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM

2. Neural Networks

3. Unsupervised Learning
Gaussian Discriminant Analysis (GDA)

Generative Algorithm for Classification

- Learn $p(x \mid y)$ and $p(y)$
- Classify through Bayes rule: $\arg\max_y p(y \mid x) = \arg\max_y p(x \mid y) p(y)$

GDA Formulation

- Assume $p(x \mid y) \sim \mathcal{N}(\mu_y, \Sigma)$ for some $\mu_y \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$
- Estimate μ_y, Σ and $p(y)$ through maximum likelihood, which is

$$
\max \sum_{i=1}^{n} \left[\log p(x^{(i)} \mid y^{(i)}) + \log p(y^{(i)}) \right]
$$

$$
p(y) = \frac{\sum_{i=1}^{n} 1_{\{y^{(i)}=y\}}}{n}, \quad \mu_y = \frac{\sum_{i=1}^{n} 1_{\{y^{(i)}=y\}} x^{(i)}}{\sum_{i=1}^{n} 1_{\{y^{(i)}=y\}}}, \quad \Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y(i)})(x^{(i)} - \mu_{y(i)})^T
$$
Naive Bayes

Formulation

- Assume $p(x \mid y) = \prod_{j=1}^{d} p(x_j \mid y)$
- Estimate $p(x_j \mid y)$ and $p(y)$ through maximum likelihood, which gives

$$p(x_j \mid y) = \frac{\sum_{i=1}^{n} 1_{\{x_j^{(i)} = x_j, y^{(i)} = y\}}}{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}$$
$$p(y) = \frac{\sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}{n}$$

Laplace Smoothing

Assume x_j takes value in $\{1, 2, \ldots, k\}$, the corresponding modified estimator is

$$p(x_j \mid y) = \frac{1 + \sum_{i=1}^{n} 1_{\{x_j^{(i)} = x_j, y^{(i)} = y\}}}{k + \sum_{i=1}^{n} 1_{\{y^{(i)} = y\}}}$$
Outline

1. Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM

2. Neural Networks

3. Unsupervised Learning
Kernel

Motivation

- Feature map: \(\phi : \mathbb{R}^d \mapsto \mathbb{R}^p \)
- Fitting linear model with gradient descent gives us \(\theta = \sum_{i=1}^{n} \beta_i \phi(x^{(i)}) \)
- Predict a new example \(z \): \(h_\theta(z) = \sum_{i=1}^{n} \beta_i \phi(x^{(i)})^T \phi(z) = \sum_{i=1}^{n} \beta_i K(x^{(i)}, z) \)

It brings nonlinearity without much sacrifice in efficiency as long as \(K(\cdot, \cdot) \) can be computed efficiently.

Definition

\(K(x, z) : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R} \) is a valid kernel if there exists \(\phi : \mathbb{R}^d \mapsto \mathbb{R}^p \) for some \(p \geq 1 \) such that \(K(x, z) = \phi(x)^T \phi(z) \)
Examples

- Polynomial kernels: $K(x, z) = (x^T z + c)^d$, $\forall \ c \geq 0$ and $d \in \mathbb{N}$
- Gaussian kernels: $K(x, z) = \exp\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$, $\forall \sigma^2 > 0$
- More in Pset2...

Theorem

$K(x, z)$ is a valid kernel if and only if for any set of $\{x^{(1)}, \ldots, x^{(n)}\}$, its Gram matrix, defined as

$$G = \begin{bmatrix} K(x^{(1)}, x^{(1)}) & \ldots & K(x^{(1)}, x^{(n)}) \\ \vdots & \ddots & \vdots \\ K(x^{(n)}, x^{(1)}) & \ldots & K(x^{(n)}, x^{(n)}) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is positive semi-definite.
Support Vector Machine (SVM)

Formulation ($y \in \{-1, 1\}$)

\[
\begin{align*}
\min_{\{w, b\}} & \quad \frac{1}{2} \|w\|_2^2 \\
\text{subject to} & \quad y^{(i)}(w^T x^{(i)} + b) \geq 1, \quad \forall \ i \in \{1, \ldots, n\} \quad \text{(Hard-SVM)}
\end{align*}
\]

\[
\begin{align*}
\min_{\{w, b, \xi\}} & \quad \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^{n} \xi_i \\
\text{subject to} & \quad y^{(i)}(w^T x^{(i)} + b) \geq 1 - \xi_i, \quad \forall \ i \in \{1, \ldots, n\} \quad \text{(Soft-SVM)}
\end{align*}
\]

Properties

- The optimal solution has the form $w^* = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ and thus can be kernelized.
Outline

1. Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM

2. Neural Networks

3. Unsupervised Learning
Model Formulation

Multi-layer Fully-connected Neural Networks (with Activation Function f)

$$a^{[1]} = f \left(W^{[1]} x + b^{[1]} \right)$$
$$a^{[2]} = f \left(W^{[2]} a^{[1]} + b^{[2]} \right)$$
$$\vdots$$
$$a^{[r-1]} = f \left(W^{[r-1]} a^{[r-2]} + b^{[r-1]} \right)$$

$$h_\theta (x) = a^{[r]} = W^{[r]} a^{[r-1]} + b^{[r]}$$

Possible Activation Functions

- ReLU: $f (z) = \text{ReLU} (z) := \max \{ z, 0 \}$
- Sigmoid: $f (z) = \frac{1}{1+e^{-z}}$
- Hyperbolic Tangent: $f (z) = \text{tanh} (z) := \frac{e^z - e^{-z}}{e^z + e^{-z}}$
Backpropagation

Let J be the loss function and $z^{[k]} = W^{[k]}a^{[k-1]} + b^{[k]}$. By chain rule, we have

$$
\frac{\partial J}{\partial W_{ij}^{[r]}} = \frac{\partial J}{\partial z_{i}^{[r]}} \frac{\partial z_{i}^{[r]}}{\partial W_{ij}^{[r]}} = \frac{\partial J}{\partial z_{i}^{[r]}} a_{j}^{[r-1]} \implies \frac{\partial J}{\partial W^{[r]}} = \frac{\partial J}{\partial z^{[r]}} a^{[r-1]T}, \quad \frac{\partial J}{\partial b^{[r]}} = \frac{\partial J}{\partial z^{[r]}}
$$

$$
\frac{\partial J}{\partial a_{i}^{[r-1]}} = \sum_{j=1}^{d_{r}} \frac{\partial J}{\partial z_{j}^{[r]}} \frac{\partial z_{j}^{[r]}}{\partial a_{i}^{[r-1]}} = \sum_{j=1}^{d_{r}} \frac{\partial J}{\partial z_{j}^{[r]}} W_{ji}^{[r]} \implies \frac{\partial J}{\partial a^{[r-1]}} = W^{[r]T} \frac{\partial J}{\partial z^{[r]}}
$$

$$
\frac{\partial J}{\partial z^{[r]}} := \delta^{[r]} \implies \frac{\partial J}{\partial z_{i}^{[r-1]}} = \left(W^{[r]T} \delta^{[r]} \right) \circ f' \left(z^{[r-1]} \right) := \delta^{[r-1]}
$$

$$
\implies \frac{\partial J}{\partial W^{[r-1]}} = \delta^{[r-1]} a^{[r-2]T}, \quad \frac{\partial J}{\partial b^{[r-1]}} = \delta^{[r-1]}
$$

Continue for layers $r - 2, \ldots, 1$.

Outline

1. Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM

2. Neural Networks

3. Unsupervised Learning
Algorithm 1: k-means

Input: Training data \(\{x^{(1)}, \ldots, x^{(n)}\} \); number of clusters \(k \)

1. Initialize \(c^{(1)}, \ldots, c^{(k)} \in \mathbb{R}^d \) as clustering centers
2. while not converge do
 3. Assign each \(x^{(i)} \) to its closest clustering centers \(c^{(j)} \)
 4. Take the mean of each cluster as new clustering center
3. end

Property

\(k \)-means tries to minimize the following loss function approximately:

\[
\min_{\{c^{(1)}, \ldots, c^{(k)}\}} \sum_{i=1}^{n} \left\| x^{(i)} - c^{(j(i))} \right\|_2^2, \quad \text{where } j(i) = \arg\min_{j' \in \{1, \ldots, k\}} \left\| x^{(i)} - c^{(j')} \right\|_2^2
\]

However, it does not guarantee to find the global minimum.
Gaussian Mixture Model (GMM)

Formulation

Assume each data point $x^{(i)}$ is generated independently through the following procedure:
1. Sample $z^{(i)} \sim \text{Multinomial} (\phi)$, where $\sum_{j=1}^{k} \phi_j = 1$
2. Sample $x^{(i)} \sim \mathcal{N} (\mu_{z(i)}, \Sigma_{z(i)})$

How to estimate parameters ϕ, $\{\mu_1, \ldots, \mu_k\}$ and $\{\Sigma_1, \ldots, \Sigma_k\}$ if $z^{(i)}$ cannot be observed?

Maximum Likelihood

$$
\ell (\theta) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} \phi_j p(x^{(i)}; \mu_j, \Sigma_j) \right),
$$

where $p(x^{(i)}; \mu_j, \Sigma_j) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_j|}} \exp \left(-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j) \right)$

This is too complicated to optimize directly!
Expectation-Maximization (EM)

Jensen’s Inequality

By Jensen’s inequality, for any distribution \(Q_i \) over \(\{1, \ldots, k\} \), we have

\[
\sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} Q_i(j) \frac{p(x^{(i)}, z^{(i)} = j; \theta)}{Q_i(j)} \right) \geq \sum_{i=1}^{n} \sum_{j=1}^{m} Q_i(j) \log \frac{p(x^{(i)}, z^{(i)} = j; \theta)}{Q_i(j)} := \text{ELBO} (\theta)
\]

Theorem

If we take
\(Q_i(j) = p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)}) \) and let
\(\theta^{(t+1)} := \text{argmax}_\theta \text{ELBO} (\theta) \), we then have \(\ell(\theta^{(t+1)}) \geq \ell(\theta^{(t)}) \) (proved in lecture).

Algorithm 2: EM Algorithm

Input: Training data \(\{x^{(1)}, \ldots, x^{(n)}\} \)

1. Initialize \(\theta^{(0)} \) by some random guess
2. for \(t = 0, 1, 2, \ldots \) do
 3. Set \(Q_i(j) = p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)}) \) for each \(i, j \); // E-step
 4. Set \(\theta^{(t+1)} = \text{argmax}_\theta \text{ELBO} (\theta); \) // M-step
5. end
EM in GMM

Posterior of $z^{(i)}$

$$p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)}) = \frac{\phi_j^{(t)} p(x^{(i)}; \mu_j^{(t)}, \Sigma_j^{(t)})}{\sum_{j'=1}^{k} \phi_{j'}^{(t)} p(x^{(i)}; \mu_{j'}^{(t)}, \Sigma_{j'}^{(t)})}$$

GMM Update Rules

By defining $w_j^{(i)} = p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)})$, we have

$$\phi_j^{(t+1)} = \frac{\sum_{i=1}^{n} w_j^{(i)}}{n}, \quad \mu_j^{(t+1)} = \frac{\sum_{i=1}^{n} w_j^{(i)} x^{(i)}}{\sum_{i=1}^{n} w_j^{(i)}}, \quad \forall j \in \{1, \ldots, k\}$$

$$\Sigma_j^{(t+1)} = \frac{\sum_{i=1}^{n} w_j^{(i)} (x^{(i)} - \mu_j^{(t+1)})(x^{(i)} - \mu_j^{(t+1)})^T}{\sum_{i=1}^{n} w_j^{(i)}}, \quad \forall j \in \{1, \ldots, k\}$$