1 Forward propagation

Recall that given input \(x \), we define \(a^{[0]} = x \). Then for layer \(\ell = 1, 2, \ldots, N \), where \(N \) is the number of layers of the network, we have

1. \(z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]} \)
2. \(a^{[\ell]} = g^{[\ell]}(z^{[\ell]}) \)

In these notes we assume the nonlinearities \(g^{[\ell]} \) are the same for all layers besides layer \(N \). This is because in the output layer we may be doing regression [hence we might use \(g(x) = x \)] or binary classification \([g(x) = \text{sigmoid}(x)]\) or multiclass classification \([g(x) = \text{softmax}(x)]\). Hence we distinguish \(g^{[N]} \) from \(g \), and assume \(g \) is used for all layers besides layer \(N \).

Finally, given the output of the network \(a^{[N]} \), which we will more simply denote as \(\hat{y} \), we measure the loss \(J(W, b) = \mathcal{L}(a^{[N]}, y) = \mathcal{L}(\hat{y}, y) \). For example, for real-valued regression we might use the squared loss

\[
\mathcal{L}(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2
\]

and for binary classification using logistic regression we use

\[
\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y}))
\]

or negative log-likelihood. Finally, for softmax regression over \(k \) classes, we use the cross entropy loss

\[
\mathcal{L}(\hat{y}, y) = - \sum_{j=1}^{k} 1\{y = j\} \log \hat{y}_j
\]

which is simply negative log-likelihood extended to the multiclass setting. Note that \(\hat{y} \) is a \(k \)-dimensional vector in this case. If we use \(y \) to instead denote the \(k \)-dimensional vector of zeros with a single 1 at the \(l \)th position, where the true label is \(l \), we can also express the cross entropy loss as

\[
\mathcal{L}(\hat{y}, y) = - \sum_{j=1}^{k} y_j \log \hat{y}_j
\]
Backpropagation

Let’s define one more piece of notation that’ll be useful for backpropagation. We will define
\[\delta^{[\ell]} = \nabla_{z^{[\ell]}} L(\hat{y}, y) \]

We can then define a three-step “recipe” for computing the gradients with respect to every \(W^{[\ell]}, b^{[\ell]} \) as follows:

1. For output layer \(N \), we have
 \[\delta^{[N]} = \nabla_{z^{[N]}} L(\hat{y}, y) \]
 Sometimes we may want to compute \(\nabla_{z^{[N]}} L(\hat{y}, y) \) directly (e.g. if \(g^{[N]} \) is the softmax function), whereas other times (e.g. when \(g^{[N]} \) is the sigmoid function \(\sigma \)) we can apply the chain rule:
 \[\nabla_{z^{[N]}} L(\hat{y}, y) = \nabla_{\hat{y}} L(\hat{y}, y) \circ (g^{[N]})'(z^{[N]}) \]
 Note \((g^{[N]})'(z^{[N]})\) denotes the elementwise derivative w.r.t. \(z^{[N]} \).

2. For \(\ell = N - 1, N - 2, \ldots, 1 \), we have
 \[\delta^{[\ell]} = (W^{[\ell+1] \top} \delta^{[\ell+1]}) \circ g'(z^{[\ell]}) \]

3. Finally, we can compute the gradients for layer \(\ell \) as
 \[\nabla_{W^{[\ell]}} J(W, b) = \delta^{[\ell]} a^{[\ell-1] \top} \]
 \[\nabla_{b^{[\ell]}} J(W, b) = \delta^{[\ell]} \]
 where we use \(\circ \) to indicate the elementwise product. Note the above procedure is for a single training example.

You can try applying the above algorithm to logistic regression (\(N = 1 \), \(g^{[1]} \) is the sigmoid function \(\sigma \)) to sanity check steps (1) and (3). Recall that \(\sigma'(z) = \sigma(z) \circ (1 - \sigma(z)) \) and \(\sigma(z^{[1]}) \) is simply \(a^{[1]} \). Note that for logistic regression, if \(x \) is a column vector in \(\mathbb{R}^{d \times 1} \), then \(W^{[1]} \in \mathbb{R}^{1 \times d} \), and hence \(\nabla_{W^{[1]}} J(W, b) \in \mathbb{R}^{1 \times d} \). Example code for two layers is also given at:

http://cs229.stanford.edu/notes/backprop.py

These notes are closely adapted from:
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
Scribe: Ziang Xie