Overview

1. Past Midterm Stats
2. Helpful Resources
3. Notation: quick clarifying review
4. Another perspective on bias-variance
5. Common Problem-solving Strategies (with examples)
The Midterms are tough - DON’T PANIC!

Fall 16 Midterm Grade distribution

Fall 17: $\mu = 39.5$, $\sigma = 14.5$

Spring 19: $\mu = 65.4$, $\sigma = 22.4$
Helpful Resources

- Study guide by past CS229 TA Shervine Amidi (link is on course syllabus)

https://stanford.edu/~shervine/teaching/cs-229/
IMPORTANT: CS229 Linear Algebra and Probability Review handouts

- Go over them carefully and in detail.
- Any and all of the concepts/tools within are fair game w.r.t. solving midterm problems

TAKE NOTES
Notation: quick clarifying review
\{x^{(i)}, y^{(i)}\}_{i=1}^n$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^d$, and $y^{(i)} \in \mathbb{R}$.
Notation: quick clarifying review

- \(\{x^{(i)}, y^{(i)}\}_{i=1}^{n} \) denotes a dataset of \(n \) examples. For each example \(i \), \(x^{(i)} \in \mathbb{R}^d \), and \(y^{(i)} \in \mathbb{R} \).
- The \(j \)-th element (i.e. feature) of the \(i \)-th sample is denoted \(x^{(i)}_j \).
Notation: quick clarifying review

- \(\{ x^{(i)}, y^{(i)} \}_{i=1}^{n} \) denotes a dataset of \(n \) examples. For each example \(i \), \(x^{(i)} \in \mathbb{R}^{d} \), and \(y^{(i)} \in \mathbb{R} \).
- The \(j \)-th element (i.e. feature) of the \(i \)-th sample is denoted \(x^{(i)}_{j} \).
- \(X \in \mathbb{R}^{n \times d} \) is the data matrix and \(\vec{y} \in \mathbb{R}^{n} \) is the label vector such that:

\[
X = \begin{bmatrix}
 x^{(1)}_1 \\
 \vdots \\
 x^{(n)}_d \\
\end{bmatrix}, \quad
\vec{y} = \begin{bmatrix}
y^{(1)} \\
\vdots \\
y^{(n)} \\
\end{bmatrix}, \\
X \theta = \begin{bmatrix}
 \theta^T \cdot x^{(1)} \\
 \vdots \\
 \theta^T \cdot x^{(n)} \\
\end{bmatrix}
\]

for parameter vector \(\theta \in \mathbb{R}^{d} \).
Notation: quick clarifying review

- \(\{x^{(i)}, y^{(i)}\}_{i=1}^{n} \) denotes a dataset of \(n \) examples. For each example \(i \), \(x^{(i)} \in \mathbb{R}^d \), and \(y^{(i)} \in \mathbb{R} \).

- The \(j \)-th element (i.e. feature) of the \(i \)-th sample is denoted \(x_{j}^{(i)} \).

- \(X \in \mathbb{R}^{n \times d} \) is the data matrix and \(\vec{y} \in \mathbb{R}^{n} \) is the label vector such that:

\[
\begin{align*}
x^{(i)} &= \begin{bmatrix} x_{1}^{(i)} \\ \vdots \\ x_{d}^{(i)} \end{bmatrix},
X &= \begin{bmatrix} - & x^{(1)T} & - \\ - & \vdots & - \\ - & x^{(n)T} & - \end{bmatrix},
\vec{y} &= \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix},
X\theta &= \begin{bmatrix} \theta^{T}x^{(1)} \\ \vdots \\ \theta^{T}x^{(n)} \end{bmatrix}
\end{align*}
\]

for parameter vector \(\theta \in \mathbb{R}^{d} \).

- The \(t \)-th iteration of \(\theta \) is denoted \(\theta^{(t)} \).
\{x(i), y(i)\}_{i=1}^{n} \text{ denotes a dataset of } n \text{ examples. For each example } i, x(i) \in \mathbb{R}^d, \text{ and } y(i) \in \mathbb{R}. \\

The \(j \)-th element (i.e. feature) of the \(i \)-th sample is denoted \(x_j(i) \). \\

\(X \in \mathbb{R}^{n \times d} \) is the data matrix and \(\vec{y} \in \mathbb{R}^n \) is the label vector such that:

\[
\begin{align*}
\begin{bmatrix}
x(1) \\
\vdots \\
x(n)
\end{bmatrix}
, \quad
\begin{bmatrix}
-x(1)^T \\
\vdots \\
-x(n)^T
\end{bmatrix}
, \quad
\begin{bmatrix}
y(1) \\
\vdots \\
y(n)
\end{bmatrix}
, \quad
\begin{bmatrix}
\theta^T x(1) \\
\vdots \\
\theta^T x(n)
\end{bmatrix}
\end{align*}
\]

for parameter vector \(\theta \in \mathbb{R}^d \).

The \(t \)-th iteration of \(\theta \) is denoted \(\theta(t) \).

\textbf{Superscripts:} sample index \(i \in [1, n] \); iteration index \(t \in [1, T] \)
Notation: quick clarifying review

- \(\{x^{(i)}, y^{(i)}\}_{i=1}^{n} \) denotes a dataset of \(n \) examples. For each example \(i \), \(x^{(i)} \in \mathbb{R}^{d} \), and \(y^{(i)} \in \mathbb{R} \).
- The \(j \)-th element (i.e. feature) of the \(i \)-th sample is denoted \(x^{(i)}_j \).
- \(X \in \mathbb{R}^{n \times d} \) is the data matrix and \(\tilde{y} \in \mathbb{R}^{n} \) is the label vector such that:

\[
\begin{align*}
x^{(i)} &= \begin{bmatrix} x^{(i)}_1 \\ \vdots \\ x^{(i)}_d \end{bmatrix},
X &= \begin{bmatrix} - & x^{(1)}^T & - \\ - & \vdots & - \\ - & x^{(n)}^T & - \end{bmatrix},
\tilde{y} &= \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix},
X\theta &= \begin{bmatrix} \theta^T x^{(1)} \\ \vdots \\ \theta^T x^{(n)} \end{bmatrix}
\end{align*}
\]

for parameter vector \(\theta \in \mathbb{R}^{d} \).
- The \(t \)-th iteration of \(\theta \) is denoted \(\theta^{(t)} \).
- **Superscripts**: sample index \(i \in [1, n] \); iteration index \(t \in [1, T] \)
- **Subscripts**: feature index \(j \in [1, d] \)
Another perspective on bias-variance

- f is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.

Approximation error
- \rightarrow bias
- Reduce bias by expanding F (e.g. more features, more layers) or moving F closer to optimal model (f^*, i.e. choosing a better class)

Estimation error
- \rightarrow variance
- Reduce variance by contracting F (e.g. remove features, regularize) or making \vec{f} closer to g (e.g. better training algo, more data)
Another perspective on bias-variance

F is your model class

f^* is optimal model for problem (or the true generating distribution)

g is the optimal model in your model class

\hat{f} is the model you obtain through learning on your dataset.

$\text{approximation error} \rightarrow \text{bias}$

Reduce bias by expanding F (e.g. more features, more layers) or moving F closer to optimal model f^* (i.e. choosing a better class)

$\text{estimation error} \rightarrow \text{variance}$

Reduce variance by contracting F (e.g. remove features, regularize) or making \hat{f} closer to g (e.g. better training algo, more data)
Another perspective on bias-variance

- \(\mathcal{F} \) is your model class
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
 - reduce bias by expanding \mathcal{F} (e.g. more features, more layers) or moving \mathcal{F} closer to optimal model f^* (i.e. choosing a better class)
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
 - reduce bias by expanding \mathcal{F} (e.g. more features, more layers) or moving \mathcal{F} closer to optimal model f^* (i.e. choosing a better class)
- estimation error \rightarrow variance
Another perspective on bias-variance

- \mathcal{F} is your model class
- f^* is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
 - reduce bias by expanding \mathcal{F} (e.g. more features, more layers) or moving \mathcal{F} closer to optimal model f^* (i.e. choosing a better class)
- estimation error \rightarrow variance
 - reduce variance by contracting \mathcal{F} (e.g. remove features, regularize) or making \hat{f} closer to g (e.g. better training algo, more data)
Common Problem-solving Strategies

1. Probability
 - Bayes' Rule
 - Independence, Conditional Independence
 - Chain Rule
 - etc.

2. Calculus (e.g. taking gradients)
 - Maximum likelihood estimations:
 \[\ell (\theta) = \log L (\theta) = \log \prod p (x) = \sum \log p (x) \]
 - Loss minimization
 - etc.

3. Linear Algebra
 - PSD, eigendecomposition, projection, Mercer's Theorem etc.

4. Proof techniques
 - construction, contradiction (e.g. counterexample), induction,
 - contrapositive, etc.
Common Problem-solving Strategies

Take stock of your arsenal
Take stock of your arsenal

1. Probability
 - Bayes’ Rule
 - Independence, Conditional Independence
 - Chain Rule
 - etc.

2. Calculus (e.g. taking gradients)
 - Maximum likelihood estimations:
 \[\ell(\theta) = \log L(\theta) = \sum \log p(x_i|\theta) \]
 - Loss minimization
 - etc.

3. Linear Algebra
 - PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4. Proof techniques
 - construction, contradiction (e.g. counterexample), induction, contrapositive, etc.
Common Problem-solving Strategies

Take stock of your arsenal

1. Probability
 - Bayes’ Rule
 - Independence, Conditional Independence
 - Chain Rule
 - etc.

2. Calculus (e.g. taking gradients)
 - Maximum likelihood estimations:
 \[\ell(.) = \log \mathcal{L}(.) = \log \prod p(.) = \sum \log p(.) \]
 - Loss minimization
 - etc.
Common Problem-solving Strategies

Take stock of your arsenal

1. **Probability**
 - Bayes’ Rule
 - Independence, Conditional Independence
 - Chain Rule
 - etc.

2. **Calculus (e.g. taking gradients)**
 - Maximum likelihood estimations:

 $$\ell(.) = \log \mathcal{L}(.) = \log \prod p(.) = \sum \log p(.)$$

 - Loss minimization
 - etc.

3. **Linear Algebra**
 - PSD, eigendecomposition, projection, Mercer’s Theorem etc.
Common Problem-solving Strategies

Take stock of your arsenal

1. **Probability**
 - Bayes’ Rule
 - Independence, Conditional Independence
 - Chain Rule
 - etc.

2. **Calculus (e.g. taking gradients)**
 - Maximum likelihood estimations:
 \[
 \ell(.) = \log \mathcal{L}(.) = \log \prod p(.) = \sum \log p(.)
 \]
 - Loss minimization
 - etc.

3. **Linear Algebra**
 - PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4. **Proof techniques**
 - construction, contradiction (e.g. counterexample), induction, contrapositive, etc.
Recall that the Exponential distribution parameterized by $\lambda > 0$ has density

$$p(x; \lambda) = \lambda \exp(-\lambda x), \quad x \in \mathbb{R}_+.$$

Now suppose that our model is described as follows:

$$y \sim \text{Bernoulli}(\phi)$$

$$x|y = 0 \sim \text{Exponential}(\lambda_0)$$

$$x|y = 1 \sim \text{Exponential}(\lambda_1)$$ \hspace{1cm} (2)

where ϕ is the parameter of the class marginal distribution, and λ_0 and λ_1 are the class specific parameters for the distribution over input x given $y \in \{0, 1\}$.

(a) [5 points] Derive an exact formula for $p(y = 1|x)$ from the terms defined above, and also show that the resulting classifier has a linear decision boundary in x. Specifically, show that

$$p(y = 1|x) = \frac{1}{1 + \exp\{-\theta_0 + \theta_1 x\}}$$

for some θ_0 and θ_1. Clearly state what θ_0 and θ_1 are.

(b) [10 points] Derive the Maximum Likelihood Estimates of ϕ, λ_0 and λ_1 for the given training data using the joint probability (i.e $\ell(\phi, \lambda_0, \lambda_1) = \log \prod_{i=1}^n p(x^{(i)}, y^{(i)}; \phi, \lambda_0, \lambda_1)$.
Recall that the Exponential distribution parameterized by $\lambda > 0$ has density
\[p(x; \lambda) = \lambda \exp(-\lambda x), \quad x \in \mathbb{R}_+. \]

Now suppose that our model is described as follows:
\begin{align*}
y &\sim \text{Bernoulli}(\phi) \\
x|y = 0 &\sim \text{Exponential}(\lambda_0) \\
x|y = 1 &\sim \text{Exponential}(\lambda_1)
\end{align*}
\tag{2}

where ϕ is the parameter of the class marginal distribution, and λ_0 and λ_1 are the class specific parameters for the distribution over input x given $y \in \{0, 1\}$.

(a) [5 points] Derive an exact formula for $p(y = 1|x)$ from the terms defined above, and also show that the resulting classifier has a linear decision boundary in x. Specifically, show that
\[p(y = 1|x) = \frac{1}{1 + \exp\{-\theta_0 + \theta_1 x\}} \]
for some θ_0 and θ_1. Clearly state what θ_0 and θ_1 are.

(b) [10 points] Derive the Maximum Likelihood Estimates of ϕ, λ_0 and λ_1 for the given training data using the joint probability (i.e $\ell(\phi, \lambda_0, \lambda_1) = \log \prod_{i=1}^n p(x^{(i)}, y^{(i)}, \phi, \lambda_0, \lambda_1)$).

Tools used: Probability (Bayes’, Indep, Chain Rule), Calculus (MLE)
5. [10 points] Kernel Fun

In the following sub-questions, we will explore various properties of Kernels. Throughout the question, we assume \(x, z \in \mathbb{R}^d \), \(\phi : \mathbb{R}^d \to \mathbb{R}^p \), \(K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \).

(a) [5 points]

Suppose we have a Positive Semidefinite Matrix \(G \in \mathbb{R}^{d \times d} \), and define a function \(K \) as follows:

\[
K(x, z) := x^T G z.
\]

Show that \(K \) is a valid kernel.

Remark: Note that \(G \) is not to be confused to be the kernel matrix.

Hint: You could consider using eigendecomposition of \(G \), though it is possible to show the result without constructing an explicit feature map.

Tools used: Linear Algebra (PSD properties, eigendecomposition), proof by construction
The midterm is tough. Don’t panic!
Use resources - study guide, lecture and review handouts, Piazza, OH
Know your problem-solving tools - take stock of your arsenal!
Best of Luck!