Meeting Times and Locations

Lectures Mondays and Wednesdays, 9:30 AM - 10:50 AM Bishop Auditorium
Discussion Sections Friday 1:30-2:50 PM Section Bishop Auditorium (optional attendance)

Teaching Staff

Professor Professor Course Coordinator
Andrew Ng Ron Dror Swati Dube Batra
Office: Gates 112 Office: Gates 204 Office: Gates 108

Head TA Project Head TA
Anand Avati Raphael Townshend
Office: Gates 108 Office: Clark S221

Teaching Assistants

Shervine Amidi Tony Duan Yu Wang
Christopher Chute Xuhua Gao Xiaoyan Wu
Gael Colas Shreyansh Pandey Jian Zhang
Ashwini Ramamoorthy Suvadip Paul Cindy Wang
Jaspreet Kaur Mario Srouji Akhila Yerukola
Hoon Ji Kim (Andy) Ethan Steinberg Ashkon Farhangi
Zahra Koochak Atharva Parulekar
Christopher Yeh Fantine Huot

Remote Teaching Assistants

Varsha Shankar Kushaagra Goyal
Sagar Honnungar Hojat Ghorbani
Ishan Patil
Contact Information

If you have a homework, technical or general administrative question about CS229, for you to get the fastest possible response, please post it on our Piazza forum. To contact the CS229 teaching staff directly, you can also email us at cs229-qa@cs.stanford.edu. For telephone numbers and information about office hours (where we can help you in person), see Office Hours and Contact Information.

Course Description

This course provides a broad introduction to machine learning and statistical pattern recognition. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing.

Prerequisites

Students are expected to have the following background:

- Knowledge of basic computer science principles and skills, at a level sufficient to write a reasonably non-trivial computer program.
- Familiarity with the basic probability theory. (CS 109 or STATS 116)
- Familiarity with the basic linear algebra (MATH 104, MATH 113, or CS205)

Course Materials

There is no required text for this course. Notes will be posted periodically on the course web site. The following books are recommended as optional reading:

Course handouts and other materials can be downloaded from http://www.stanford.edu/class/cs229/materials.html

Online Resources

- Home page: http://cs229.stanford.edu/
- Assignments: https://www.gradescope.com
- Current quarter's class videos: https://mvideox.stanford.edu/Course/1184
- Piazza forum: https://piazza.com/class/jkbylqx4kcp1h3
- Staff mailing list: cs229-qa@cs.stanford.edu (to contact the teaching staff directly)
Homeworks and Grading

There will be four written homeworks (4 x 10 = 40%), one midterm (20%), and one major open-ended term project (40%). The homeworks will contain written questions and questions that require some programming. In the term project, you will investigate some interesting aspect of machine learning or apply machine learning to a problem that interests you. The term project may be done in teams of up to three persons.

We try very hard to make questions unambiguous, but some ambiguities may remain. Ask if confused or state your assumptions explicitly. Reasonable assumptions will be accepted in case of ambiguous questions.

Honor code: We strongly encourage students to form study groups. Students may discuss and work on homework problems in groups. However, each student must write down the solutions independently, and without referring to written notes from the joint session. In other words, each student must understand the solution well enough in order to reconstruct it by him/herself. In addition, each student should write on the problem set the set of people with whom s/he collaborated.

Further, since we occasionally reuse problem set questions from previous years, we expect students not to copy, refer to, or look at the solutions in preparing their answers. It is an honor code violation to intentionally refer to a previous year's solutions. This applies both to the official solutions and to solutions that you or someone else may have written up in a previous year.

Late Assignments: Each student will have a total of seven (7) free late (calendar) days to use for homeworks, project proposals and project milestones. Once these late days are exhausted, any assignments turned in late will be penalized 20% per late day. However, no assignment will be accepted more than three days after its due date, and late days cannot be used for the final project writeup. Each 24 hours or part thereof that a homework is late uses up one full late day.

Assignment Submission: All assignments (both on-campus and SCPD students) will be submitted online in Gradescope. You should have received an email invite to the Gradescope course at the email registered in Axess.

Regrade requests: After grades are released on Gradescope, there will be a regrade period of 3 days during which you can request regrades for specific questions. No regrade requests will be accepted after the 3 day period.

Midterm exam: The midterm will be a take-home exam for both on-campus and SCPD students, in the week of Nov 5th. Details of exact duration and format will be posted soon.

Sections

To review material from the prerequisites or to supplement the lecture material, there will occasionally be extra discussion sections held on Friday. An announcement will be made whenever one of these sections is held. Attendance at these sections is optional.
Communication with the Teaching Staff

If you have a question that is not confidential or personal, encourage you to post it on our forum on Piazza. To contact the teaching staff directly, we strongly encourage you to come to office hours. If that is not possible, you can also email us at the course staff list, cs229-qa@cs.stanford.edu (consisting of the TAs and the professor). By having questions sent to all of us, you will get answers much more quickly. Of course, confidential or personal questions can still be sent directly to Professor Ng, Professor Dror, or the TAs.

For grading questions, please talk to us after class or during office hours

Answers to commonly asked questions and clarifications to the homeworks will be posted on the FAQ.
Schedule (Tentative)

- **Introduction** (1 class)
 Basic concepts.

- **Supervised learning** (6 classes)
 Supervised learning setup. LMS.
 Logistic regression. Perceptron. Exponential family.
 Support vector machines.
 Model selection and feature selection.
 Evaluating and debugging learning algorithms.

- **Learning theory** (2 classes)
 Bias/variance tradeoff.
 Practical advice on how to use learning algorithms.

- **Deep Learning** (2 classes)
 Neural Networks. Backpropagation.
 Vectorization.

- **Unsupervised learning** (5 classes)
 Clustering. K-means.
 EM. Mixture of Gaussians.
 Factor analysis.
 PCA (Principal components analysis).
 ICA (Independent components analysis).

- **Reinforcement learning and control** (4 classes)
 MDPs. Bellman equations.

Dates for assignments

- Assignment 1: Out 10/03. Due 10/17.
- Midterm: TBD.

Term project

- Proposals due 10/19 (11:59pm).
- Milestone due 11/16 (11:59pm).
- Poster presentations on 12/11 (8.30am-11.30am).
- Final report due on 12/14 (11:59pm, no late days).