
MATLAB ® Tutorial

Anand Sampat, asampat@stanford.edu

October 10, 2014

Introduction

MATLAB ® is a high-level language and interactive environment for numer-
ical computation, visualization, and programming. In CS 229 we’ll use it to
prototype machine learning algorithms using standard MATLAB ® functions
(no special libraries). Since we don’t require external libraries, you can also use
Octave, which is an open source version of MATLAB ® .

Accessing MATLAB® and/or Octave

As a Stanford student, you have 2 options to use MATLAB ®

1) Download the program (for more information see ’https://itservices.

stanford.edu/service/softwarelic/matlab’. You can buy MATLAB® 2013
or 2014.

2) Use MATLAB® on the corn machines on Farmshare. In order to use it
you can use the command: ssh -CY username@corn.stanford.edu in the
UNIX command prompt (-C compresses your data over the network which
may increase the speediness when using MATLAB® and -Y provides a more
secure version of X11 forwarding). Try matlab & to open up MATLAB®.
If it is not already installed please visit https://web.stanford.edu/group/

farmshare/cgi-bin/wiki/index.php/MATLAB for more information on how to
load MATLAB® modules on Farmshare.

If you prefer to use Octave, you can download it for multiple platforms @ https:

//www.gnu.org/software/octave/download.html.

1

'https://itservices.stanford.edu/service/softwarelic/matlab'
'https://itservices.stanford.edu/service/softwarelic/matlab'
https://web.stanford.edu/group/farmshare/cgi-bin/wiki/index.php/MATLAB
https://web.stanford.edu/group/farmshare/cgi-bin/wiki/index.php/MATLAB
https://www.gnu.org/software/octave/download.html
https://www.gnu.org/software/octave/download.html

Basics MATLAB® is a scripting language and thus has an interactive envi-
ronment and a proper functional backbone. Scripts can be written into ”.m”
files either as a list of interactive commands, or as a single function. Tech-
nically it is also possible to have multiple functions in one file by defining
classes using OOP, but for this class we won’t need such functionality. (See
logistic_grad_ascent.m for a good example of this).

Below I’ll go through certain classes of basic functions and finally will give a
few examples of learning algorithms and functions associated with those matrix
manipulations. All of the commands can be found in matlab_session_2014.m.

Elementary Functions Similar to Python and other interactive languages,
MATLAB® can be used to do simple math and if no semicolon is used to end
the line, the result will be displayed and stored in the ”ans” variable.

1 %%% elementary operations
2 5+6
3 3−2
4 5*8
5 1/2
6 2ˆ6
7 1 == 2 % false
8 1 6= 2 % true. note, not "!="
9 1 && 0

10 1 | | 0
11 xor(1,0)

Variable Assignment Assignment is done via a single equals sign. You can
also explicitly display variables in specific formats (float, int, etc.) using sprintf
and disp functions.

1 %% variable assignment
2 a = 3; % semicolon suppresses output
3 b = 'hi';
4 c = 3≥1;
5

6 % Displaying them:
7 a = pi
8 disp(sprintf('2 decimals: %0.2f', a))
9 disp(sprintf('6 decimals: %0.6f', a))

10 format long
11 a
12 format short
13 a

Vectors and Matrices Vectors and matrices can be defined using square brack-

2

ets. Values separated by a space or comma are within the same row. Values
separated by a semicolon are within the same column.

1 %% vectors and matrices
2 A = [1 2; 3 4; 5 6]
3 v = [1 2 3]
4 v = [1; 2; 3]
5 v = [1:0.1:2] % from 1 to 2, with stepsize of 0.1. Useful for ...

plot axes
6 v = 1:6 % from 1 to 6, assumes stepsize of 1
7

8 C = 2*ones(2,3) % same as C = [2 2 2; 2 2 2]
9 w = ones(1,3) % 1x3 vector of ones

10 w = zeros(1,3)
11 w = rand(1,3) % drawn from a uniform distribution
12 w = randn(1,3) % drawn from a normal distribution (mean=0, var=1)
13 w = −6 + sqrt(10)*(randn(1,10000)) % (mean = 1, var = 2)
14 hist(w)
15 e = []; % empty vector
16 I = eye(4) % 4x4 identity matrix

Dimensions

1 %% dimensions
2 sz = size(A)
3 size(A,1) % number of rows
4 size(A,2) % number of cols
5 length(v) % size of longest dimension

Indexing Indices can be just numbers, sequences of numbers, or matrices
themselves. To find out about all of the possibilities please refer to http:

//www.mathworks.com/help/matlab/math/matrix-indexing.html.

1 %% indexing
2 A(3,2) % indexing is (row,col)
3 A(2,:) % get the 2nd row. %% ":" means every elt along that ...

dimension
4 A(:,2) % get the 2nd col
5 A(1,end) % 1st row, last elt. Indexing starts from 1.
6 A(end,:) % last row
7 A([1 3],:) % use arrays as indices
8 A(1:3,1:2) % use sequences as indices
9 A(:,2) = [10 11 12]' % change second column

10 A = [A, [100; 101; 102]]; % append column vec
11 A = [ones(size(A,1),1), A]; % e.g bias term in linear regression
12 A(:) % Select all elements as a column vector.

Matrix Operations Matrix operations can be either matrix-wise or element-

3

http://www.mathworks.com/help/matlab/math/matrix-indexing.html
http://www.mathworks.com/help/matlab/math/matrix-indexing.html

wise. Functions that are defined for matrices such as multiplication(*), division

(/), or the power operator ()̂ require a ”.” before to explicitly to perform the
operation element-by-element. Most other functions, including local functions,
are element-wise by default.

1 %% matrix operations
2 C = [C ; C]
3 A * C % matrix multiplication
4 B = [5 6; 7 8; 9 10] % same dims as A
5 A = A(1:3,1:2);
6 A .* B % element−wise multiplcation
7 % A .* C or A * B gives error − wrong dimensions
8 A .ˆ 2
9 1./v

10 log(v) % functions like this operate element−wise on vecs or ...
matrices

11 exp(v) % eˆ4
12 abs(v)
13

14 −v % −1*v
15

16 v + ones(1,length(v))
17 % v + 1 % same
18

19 A' % (conjuate) transpose

Reshape and Replication

1 %% reshape and replication
2 A = magic(3)
3 A = [A [0;1;2]]
4 reshape(A,[4 3])
5 reshape(A,[2 6])
6 v = [100;0;0]
7 %A+v
8 A + repmat(v,[1 4])
9 bsxfun(@plus, A, v)

Plotting There are a number of different plots you can create in MATLAB
®. For the purposes of this class especially focus on ”plot” and ”scatter” -
read more at http://www.mathworks.com/help/matlab/ref/plot.html and
http://www.mathworks.com/help/matlab/ref/scatter.html.

1 %% plotting
2 t = [0:0.01:0.98];
3 y1 = sin(2*pi*4*t);
4 plot(t,y1);
5 y2 = cos(2*pi*4*t);
6 hold on; % "hold off" to turn off

4

http://www.mathworks.com/help/matlab/ref/plot.html
http://www.mathworks.com/help/matlab/ref/scatter.html

7 plot(t,y2,'r−−');
8 xlabel('time');
9 ylabel('value');

10 legend('sin','cos');
11 title('my plot');
12 close; % or, "close all" to close all figs
13

14 figure(2), clf; % can specify the figure number
15 subplot(1,2,1); % Divide plot into 1x2 grid, access 1st element
16 plot(t,y1);
17 subplot(1,2,2); % Divide plot into 1x2 grid, access 2nd element
18 plot(t,y2);
19 axis([0.5 1 −1 1]); % change axis scale

Display Matrix or Image

1 %% display a matrix (or image)
2 figure;
3 imagesc(magic(15)), colorbar, colormap flag;
4 % comma−chaining function calls.

Loading and Saving Files The example below assumes the files are already
in the current path. If that isn’t the case, either add the directory that contains
the files to the path or write out the full path in the command (e.g. load ...

/path/to/directory/q1x.dat).

1 %% loading and saving data
2 load q1y.dat
3 load q1x.dat
4 who % displays all workspace variables
5 whos % displays all workspace variables with details
6 %clear q1y % clear w/ no argt clears all
7 v = q1x(1:10);
8 save hello v; % save variable v into file hello.mat
9 save hello.txt v −ascii; % save as ascii

10 % fopen, fprintf, fscanf also work
11 % ls %% cd, pwd & other unix commands work in matlab; to ...

access shell,
12 % preface with "!"

For/While Loops and If Statements Don’t try to use for and/or while loops
too much. First try to solve the problem using matrices, then if needed use a
for or while loop. Think matrix first.

1 %% for, while, if statements
2

3 w = [];

5

4 z = 0;
5 is = 1:10
6 for i=is
7 w = [w, 2*i] % Same as \/
8 % w(i) = 2*i
9 % w(end+1) = 2*i

10 z = z + i;
11 break;
12 continue;
13 end
14 % avoid! same as w = 2*[1:10], z = sum([1:10]);
15

16 w = [];
17 while length(w) < 3
18 w = [w, 4];
19 break
20 end
21

22 if w(1)==0
23 % <statement>
24 elseif w(1)==1
25 % <statement>
26 else
27 % <statement>
28 end

Other Useful Functions

1 %% misc useful functions
2

3 % max (or min)
4 a = [1 15 2 0.5]
5 val = max(a)
6 [val,ind] = max(a)
7

8 % find
9 find(a < 3)

10 A = magic(3)
11 [r,c] = find(A≥7)
12

13 % sum, prod
14 sum(a)
15 prod(a)
16 floor(a) % or ceil(a)
17 max(rand(3),rand(3))
18 max(A,[],1)
19 min(A,[],2)
20 A = magic(9)
21 sum(A,1)
22 sum(A,2)
23 sum(sum(A .* eye(9)))
24 sum(sum(A .* flipud(eye(9))))
25

26 % pseudo−inverse

6

27 pinv(A) % inv(A'*A)*A'
28

29 % check empty
30 isempty(e)
31 numel(A)
32 size(A)
33 prod(size(A))

Logistic Regression Example

1 % logistic grad ascent.m
2 function [theta, ll] = logistic grad ascent(X,y)
3

4 % rows of X are training samples
5 % rows of Y are corresponding 0/1 values
6

7 % output ll: vector of log−likelihood values at each iteration
8 % ouptut theta: parameters
9

10 alpha = 0.0001;
11

12 [m,n] = size(X);
13

14 max iters = 500;
15

16 X = [ones(size(X,1),1), X]; % append col of ones for intercept term
17

18 theta = zeros(n+1, 1); % initialize theta
19 for k = 1:max iters
20 hx = sigmoid(X*theta);
21 theta = theta + alpha * X' * (y−hx);
22 ll(k) = sum(y .* log(hx) + (1 − y) .* log(1 − hx));
23 end

We can then run the logistic gradient ascent and plot the convergence. Note,
you can just call the function as long as the .m file associated with the file is in
your MATLAB® path.

1 [th,ll] = logistic grad ascent(q1x,q1y);
2 plot(ll)

”3-D” Linear Regression Example Below is a basic linear regression func-
tion that uses gradient descent to learn a set of parameters w learned.Again the
convergence criteria is hard-coded but you might consider more representative
convergence criteria in your own code for homeworks.

1 % linear regress.m

7

2 function w learned = linear regress(X,y)
3 % linear regression model
4

5 % Plot the original data
6 epsilon = 0.0001;
7 max iters = 5000;
8

9 % Use gradient descent to to learn a set of parameters w learned
10 % initialize w learned randomly
11 w learned = randn(2,1);
12 % iterate for max iters # of iterations (could use other convergence
13 % criteria)
14 for iteration = 1:max iters
15 grad = 2*sum(repmat(w learned'*X−y,size(X,1),1).*X,2);
16 w learned=w learned−0.0001*grad;
17 err=sum((y−w learned'*X).ˆ2);
18 end

In the matlab_session_2014.m file, we first define a random set of X’s and
add some random normal noise to a linear model to find y’s. After running the
model we can plot y and y hat, the estimate, on the same 3-D graph.

1 % Create a random normal model (think of it as original data)
2 X=randn(2,1000);
3 w= [1;1];
4 n=randn(1,1000)+0.1;
5 y=w'*X + n;
6

7 % Run linear regression
8 th = linear regress(X,y);
9

10 % Calculate y hat
11 y hat = th'*X;
12

13 % Plot the original data along with the y hat
14 scatter3(X(1,:),X(2,:),y);
15 hold on; % keeps the same figure active − can plot multiple ...

plots on one axis
16 scatter3(X(1,:),X(2,:),y hat,'r');

For further information regarding MATLAB® syntax, you can refer to http:

//www.mathworks.com/help/matlab/index.html

8

http://www.mathworks.com/help/matlab/index.html
http://www.mathworks.com/help/matlab/index.html

