
CS229 Project Report:
Automated photo tagging in Facebook

Sebastian Schuon, Harry Robertson, Hao Zou
schuon, harry.robertson, haozou @stanford.edu

Abstract

We examine the problem of automatically identifying
and tagging users in photos on a social networking
environment known as Facebook. The presented au-
tomatic facial tagging system is split into three subsys-
tems: obtaining image data from Facebook, detecting
faces in the images and recognizing the faces to match
faces to individuals. Firstly, image data is extracted
from Facebook by interfacing with the Facebook API.
Secondly, the Viola-Jones’ algorithm is used for locat-
ing and detecting faces in the obtained images. Fur-
thermore an attempt to filter false positives within the
face set is made using LLE and Isomap. Finally, facial
recognition (using Fisherfaces and SVM) is performed
on the resulting face set. This allows us to match faces
to people, and therefore tag users on images in Face-
book. The proposed system accomplishes a recogni-
tion accuracy of close to 40%, hence rendering such
systems feasible for real world usage.

1 Introduction

Recently image sharing on the social network platform
Facebook has become very popular. Here photo al-
bums are combined with social networking, so individ-
uals can be marked in uploaded pictures. This marking
is refered to as ‘tagging’ on Facebook. Currently this
task is done manually, but with a exponentially grow-
ing number of images, an automatic solution is desir-
able. We break this task into three sub-tasks, namely:
data collection, face detection and face recognition.
The paper’s structure follows this processing pipeline.
Thus section 2 outlines our method for obtaining im-
ages from Facebook. We extract faces from these im-
ages in section 3, and finally perform face recognition
in section 4. We present our conclusions and ideas for
future work in section 5.

Figure 1: Schematic of the Facebook crawler

2 Collecting data from Facebook

To implement an automatic image tagging system, one
first has to acquire the image data. For the platform we
have chosen to work on, namely Facebook, this task
used to be very sophisticated, if not impossible. But
with the recent publication of an API to their platform,
this has been greatly simplified. The API allows third
party applications to integrate into their platform and
most importantly to access their databases (for details
see figure 1 and [3]). We have set up an application on
this platform, which allows the user to gather image
data on himself and his friends. This data is in turn fed
into the image processing pipeline to learn the user’s
faces.

The Facebook platform allows for users to upload
pictures and tag people on these images. Here tagging
means the process of placing a box around the per-
son’s faces in the image and identifying them. Figure
2 shows an example of a placed tag. In Facebook’s
current tagging implementation, a constant-sized rect-
angle is placed over a persons face, and only the center
of the box is stored.

To date, these tags must be manually placed by users
who recognize the faces of their friends in an image.
We want to improve on this and have the tagging oper-
ation performed automatically when a picture is added

1



Figure 2: A typical tagged Facebook photo

Figure 3: A typical set of detected faces for a Facebook
user

to the platform. However, the tags already placed by
users are very useful for the learning process, since
they supply the algorithm with numerous training ex-
amples of a person’s face (if we were limited to profile
pictures, we would have only one training image per
person).

For our current training set, our crawler extracted
data for 100 individuals from the Facebook platform.
This includes 92 profile images plus 2509 photos
which contain at least one tag. In total 2928 tags have
been collected, hence some of the photos contained
more than one person.

Examining the data, it is notable that for about 50
percent of the users, we have less than five images,
which will make the learning process hard. Also, peo-
ple strike very different poses and are taken from dif-
ferent angles, which will be an additional challenge for
the recognition task (see figure 3 for some examples).

3 Face Detection
After the data (i.e. images, tags and user information)
has been crawled and downloaded, it needs to be pro-
cessed to put it in an appropriate format for the follow-

ing steps. Depending on the learning algorithm, differ-
ent post processing steps may be applied later, but the
most crucial is the reduction of the images to snapshots
of faces.

Our face detection task can be characterized by two
properties. Firstly, it needs to be very robust, since
individuals may appear with turned or partly occluded
faces. Secondly, we need an algorithm which performs
the detection process with low computational require-
ments, since a large number of images needs to be pro-
cessed and the user will not tolerate waiting a long time
for his images to be tagged.

We experimented with two different algorithms for
the face detection task, one based on Haar-features by
Viola and Jones [9] and one based on fixed size, sep-
arable patches named FDlib [4]. The results of both
algorithms are given in table 1. We notice first of all
that for about 35 percent of the tags no face could be
recognized. This is partly due to non-available images
(i.e. download error, privacy retriction), which account
for about one quarter of the missed faces. The other
three quarters are situations where the algorithm was
not able to detect a face. Here often the algorithm is to
blame, but in a significant amount of cases, people just
tagged non-face objects as ‘people’.

Both algorithms detect roughly the same amount
of faces, with Viola-Jones yielding a higher rate on
faces which actually belong to the person indicated1.
The other two categories for returned images are
ones which feature the face of a different person and
ones with no face at all. The latter is due to mis-
classification of an object as a face, whereas the for-
mer is due to the presence of multiple people on an
image. Both error categories will have consequences
of varying severity, depending on whether face detec-
tion is used to find faces in a newly uploaded picture
or generate training data from existing pictures).

Given the results in table 1, we selected Viola-Jones
for face detection, since it not only yields a higher rate
of correct faces detected, but also has an optimized
implementation in Intel’s OpenCV library [5]. The re-
sults can be improved further if both algorithms are run
in parallel and faces are only chosen if they are found
by both algorithms. Furthermore Viola-Jones allows
for adjustment of the weights of its weak classifiers,
so the algorithm could be adapted to typical poses of
Facebook users.

Face detection errors within the training set lead to
inferior recognition rate in the following face recogni-
tion. These images can be considered as outliers, and
we attempt to filter them out.

Two recently introduced algorithms, Locally Linear

1For error evaluation, all face data was hand labeled, so a certain
error due to human involvement should be assumed.

2



Total Tags Total Faces Detected Face-person Identical Face-Person mismatch No Face Present
Viola-Jones 2928 1987 1391 369 227

FDLib 2928 1953 781 139 1033

Table 1: Face detection results

Embedding (LLE) [6] and isometric feature mapping
(Isomap) [8], have acquired a growing interest among
researchers because of their excellent performance in
dimension reduction for nonlinear data. The key idea
here is that all faces of a person lie on a manifold,
whereas outliers are detached from the manifold’s sur-
face. So far this approach has mainly been applied to
facial expressions [6].

LLE computes low-dimensional, neighborhood-
preserving embeddings of high-dimensional inputs ex-
pected to lie on the manifold. Isomap is also a non-
linear dimensionality reduction algorithm. But unlike
LLE, it performs low-dimensional mapping by tracing
the shortest paths confined to the manifold of observed
inputs. Since both algorithms are unsupervised ones,
they do not require a training phase.

For LLE, the number of nearest neighbors (the most
important parameter for the algorithm) is chosen to be
seven after trial and error for the Facebook images,
which is at the lower bound of the recommended range
[7]. The original dimension of an image is 60 by 60,
a total of 3600 dimensions, which we map to two di-
mension data using LLE and Isomap. The outlier clas-
sification is performed by calculating the center of the
low-dimensional data, and labelling images beyond a
certain distance as outliers. In table 2 we have listed
the reduced error rates achieved. We only obtained a
marginal reduction in error rate by employing LLE and
Isomap. Therefore further research is needed on how
to eliminate outliers, or how the later face recognition
algortihms can be made more robust towards outliers.

Original LLE Isomap
32.4% 31.7% 28.6%

Table 2: Error rates before and after LLE and Isomap
filtering

4 Face recognition
Having extracted the faces of each person, we can use
them as training data to be able to identify faces in
uploaded images. To evaluate our recognition per-
formance, we have created two sets from the crawled
data: a reduced set, with six people and 50 photos per
person (referred to as ‘6 people’), and a ‘real-world’
set, with over 30 people, and from 10 to 200 photos

per person. The first serves primarily to evaluate the
algorithms. The second is typical of the set of all pho-
tos accessible in the peer group of a user. Both sets
were randomly divided into training and test sets with
an 80/20 ratio. We separated each set into two further
sets, one ‘brute’ set containing the raw data generated
by the face detection step, and one ‘hand filtered’ set
from which outliers have been removed manually.

There is an abundance of face recognition algo-
rithms available to choose from, and the face recog-
nition problem has been well studied. However, our
usage does not correspond to their usual test-cases:
face recognition algorithms are generally evaluated by
their performance on a few photo databases available
to the academic community, which are made up of per-
fectly lit and framed photos. In contrast, the task we
present features numerous poorly lit and chaotically
taken snapshots.

Hence several algorithms were tested. The follow-
ing algorithms were evaluated on the described test
sets:

• Eigenfaces

• Fisherfaces

• Support Vector Machines

In the following two subsections we will present the
performance of these algorithms.

4.1 Eigenfaces and Fisherfaces

We initially attempted to use the Eigenfaces algorithm
on the detected Facebook images. Eigenfaces uses
the Principal Component Analysis (PCA) to choose a
dimension-reducing linear projection that maximizes
the variance of all the projected samples. However,
the mapping direction selected by PCA does not take
into consideration the data’s class structure, or the fact
that the maximum variance direction achieved for all
data points may not be good for classifying points into
different classes. The Eigenfaces algorithm fails com-
pletely for the Facebook images, and returns an almost
random recognition rate in our tests.

Another algorithm, Fisherfaces, which use Fisher’s
Linear Discriminant and takes into consideration both
the between class covariance (or scatter) matrix and

3



in-class covariance matrix, tries to find a mapping di-
rection that maximizes the variance between differ-
ent classes, and is thus more suitable than Eigenfaces
for classification problems. The recognition rate for
Fisherfaces, shown in table 3, is elevated compared to
Eigenfaces but still low. This was to be expected as
Eigenfaces is a special case of Fisherfaces and gener-
ally has lower performance [1].

‘6 person’ set ‘Real world’ set
Brute Hand filtered Brute Hand filtered
21.6% 28.3% 5.5% 6.8%

Table 3: Fisherfaces recognition results

4.2 Support Vector Machines

The results obtained by Support Vector Machines
(SVM) are significantly better than those of Fisher-
faces. In the following paragraphs we outline our SVM
approach.

4.2.1 Pre-processing

Training an SVM directly on raw images is not very ef-
fective in most cases, therefore various pre-processing
steps were evaluated to improve the overall perfor-
mance:

Transforms There are a variety of tranformations
that can be applied to images to extract features which
are more relevant for face recognition. In particular we
investigated the use of Haar wavelet transformation. It
is one of the oldest and most basic transformations,
obtained by convolving the image matrix with a step
function. Although Haar features have demonstrated
their power (i.e. with the Viola-Jones algorithm used
for face detection), they did not lead to superior results.

Scaling It is desirable to scale all the features to oc-
cupy a constant interval (e.g. [−1,+1]). This is not
really an issue for raw images (where the features are
pixel values in [0, 256]), but is important if a transfor-
mation has been applied.

4.2.2 Parameters

When it comes to actually training a SVM, the key pa-
rameters are the kernel used, the cost coefficient C and
the termination criterion ε. These were selected as fol-
lows:

Kernels Making an appropriate choice of kernel is
key for the SVM. Three types of kernels were eval-
uated: linear, polynomial (with degree 3), and Radial
Basis Function (RBF)2. While the RBF kernel can pro-
duce the richest behavior, in practise our most severe
problem by far was overfitting the training data, hence
the simpler models actually gave better results (refer
to section 4.2.4 for details).

Cost coefficient and termination criterion To de-
termine values adapted to our case, we scripted a grid
search, running the algorithm for each (C, ε) tuple on
a logarithmicly scaled grid and returning the values
which gave the least leave-one-out cross-validation er-
ror. The grid search is extremely costly in execution
time, so we ran it once over a random sub-sample of
the full training set, and kept the resulting parameter
values (C = 8, γ = 0.125). The same procedure has
been used to find the optimal RBF coefficient γ.

4.2.3 Implementation

Looking for a fast implementation, we initially based
our classifier on the open-source C++ library libsvm
[2], which has the advantage of being optimized, stable
and relatively well documented. Eventually we built
our own system in C++ to address our needs better and
to be able to deploy our system on the Facebook plat-
form.

4.2.4 Results

Using the pre-processing and choice of parameters de-
scribed above, tables 4 and 5 reports the accuracy in
face recognition.

Linear Polynomial RBF
Brute images 41.6% 35.0% 18.1%
Hand filtered 42.2% 28.9% 20.0%
Haar wavelet 37.8% 35.5% 20.0%

Table 4: 6 person training set results

Linear Polynomial RBF
Brute images 25.4% 21.9% 11.5%
Hand filtered 37.1% 28.3% 15.2%

Table 5: ‘Real world’ training set results

The most significant figure is the 37.1% accuracy on
the large training set. One has to keep in mind random
identification yields accuracy of below 5% for this set,

2The Radial Basis Function is defined by: K(xi, xj) =

exp(−γ ‖xi − xj‖2)

4



and given the challenging nature of the images this rate
is remarkable.

For the other figures, the most striking observation
is that the more complex the kernel, the worse the re-
sults. One would expect a more sophisticated kernel to
yield better results, but our results indicate the reverse.
This is probably because our SVM tends to overfit the
training data, with the number of support vectors of the
same order as the number of training examples. That
can be explained by the nature of our training data:
our base training examples are extremely diverse, con-
taining photos of the same person with different poses,
lighting conditions, focus and/or apparel. The frontier
between classes is therefore very hard to define.

The second observation is the impact of pre-
processing the data. Applying the Haar wavelet trans-
formation has little impact; this is most likely due
to the fact that the 1D-Haar wavelet transform used
fails to expose more significant features (contrast here
Viola-Jones, where 2D-Haar wavelets are used). A far
greater gain in accuracy is achieved by hand-filtering
outliers: it yields a substantial improvement in terms
of accuracy on the large training set (its lack of impact
on the 6 person training set is due to the fact that those
training images were already of above-average quality,
and so few were filtered out).

5 Conclusion

Automatic tagging in Facebook is challenging from
both the face detection and the face recognition stand-
points. The huge variations in pose, facial appearance,
lighting conditions and image quality all affect facial
detection accuracy. We find Viola-Jones’ face detec-
tion to be the most successful algorithm on Facebook
data, while outlier filtering with LLE and Isomap has
little effect. For face recognition, algorithms which are
reported to have high recognition rate for standard aca-
demic face databases, such as FisherFaces, gave poor
results on our Facebook database. Using SVM, we
achieved a final recognition rate of close to 40%, a rate
which makes a publicly deployed facial tagging appli-
cation feasible.

For our automatic tagging system to be widely
adopted, the most important factor is still the detec-
tion and recognition rate. In our future work, we seek
to continue improving the facial detection and recog-
nition rate by developing and optimizing image pro-
cessing algorithms adapted to Facebook data. Addi-
tional information from Facebook can also be utilized
to boost the recognition rate. For example, if two peo-
ple (close friends) consistently appear in photos to-
gether, then the recognition of one of them in a new

photo increases the probability of the presence of the
other. The integration of such priors promises to sig-
nificantly increase the recognition rates by fully lever-
aging the strengths of the Facebook platform. Another
avenue we wish to explore is returning a set of most
likely matches, instead of the one most likely. This
will clearly increase the probability of the correct per-
son being among our results, and could thus increase
the usability of our application.

References
[1] P.N. Belhumeur, J. Hespanha, and D.J. Krieg-

man. Eigenfaces vs. Fisherfaces: Recognition us-
ing class specific linear projection. Proc. ECCV,
pages 45–58, 1996.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines. 2001.

[3] Facebook Developer Documentation.
http://developers.facebook.com/, 2007.

[4] W. Kienzle, G.H. Bakir, M. Franz, and
B. Scholkopf. Face Detection Efficient and
Rank Deficient. Advances in Neural Information
Processing Systems, 17:673–680, 2005.

[5] Open Source Computer Vision Library.
http://opencvlibrary.sourceforge.net/.

[6] L.K. Saul and S.T. Roweis. Think Globally, Fit
Locally: Unsupervised Learning of Low Dimen-
sional Manifolds. Journal of Machine Learning
Research, 4(2):119–155, 2004.

[7] S. Schuon. Locally linear embedding and its
application. Thesis, Technische Universitaet
Muenchen, 2007.

[8] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A
global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–23,
2000.

[9] P. Viola and M. Jones. Rapid object detection us-
ing a boosted cascade of simple features. Proc.
CVPR, 1:511–518, 2001.

5


